
 Hang Si

Tetrahedron VII Workshop
Barcelona, Spain
Oct. 09-11, 2023

On automatic robust and efficient mesh generation and adaptation for EDA

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.2

 Meshing in EDA

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.3

• EDA is a category of software tools for designing electronic systems such as
integrated circuits (ICs) and printed circuit boards (PCBs).

• Cadence develops software, hardware and solutions for the computing, chip, 5G
communications, automotive and aerospace industries.

EDA (Electronic Design Automation) and EDA softwares

Michael Green
What is chip design?
https://magreen.medium.com

Asianometry: EDA Software, designing billions
of circuits with code
https://www.youtube.com/watch?v=ihz2WY-E2C8

Cadence, Clarity

https://magreen.medium.com

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.4

Outline

• Meshing in EDA

• Delaunay-based 2d/3d mesh generation

• Surface mesh generation

• Remarks and outlook

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.5

Delaunay-based 2d/3d mesh generation

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.6

• Nice geometric properties: nearest neighbors, MaxMin angle, in relation to
convex polytope theory

• Dual of Voronoi diagrams (crucial property in FEM and FVM methods)

• High mesh quality (good angles) and regularity.

• Fast algorithms have been developed

• Robust (open source) softwares: Triangle, Detri2, TetGen

Delaunay and Voronoi meshes

The Voronoi Diagram

Given a set of points S ⇢ Rd. For each p 2 S, the Voronoi cell of p, V (p), is:
V (p) = {x 2 Rd | 8q 2 S |x� p|  |x� q|}.

Georgy F. Voronoy (1868-1908)

Voronoi G., Nouvelles applications des parametrès continus à la théorie de formas quadratiques.
J. Reine Angew. Math. (1907) 133:97–178, and (1908) 134:198–287.

,
3D Boundary Conforming Delaunay Mesh Generation Juni 25, 2007 9 (49)

The Voronoi Diagram

Given a set of points S ⇢ Rd. For each p 2 S, the Voronoi cell of p, V (p), is:
V (p) = {x 2 Rd | 8q 2 S |x� p|  |x� q|}.

Georgy F. Voronoy (1868-1908)

Voronoi G., Nouvelles applications des parametrès continus à la théorie de formas quadratiques.
J. Reine Angew. Math. (1907) 133:97–178, and (1908) 134:198–287.

,
3D Boundary Conforming Delaunay Mesh Generation Juni 25, 2007 9 (49)

Delaunay Triangulation

Given a point set S 2 Rd. Any simplex is Delaunay if it has a circumscribed
ball B, such that int(B) \ S = ;. The Delaunay triangulation of S, D(S), is
formed by Delaunay simplices.

Boris N. Delaunay (1890-1980)

Delaunay B.N., Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i
Estestvennykh Nauk. (1934) 7:793–800.

,
3D Boundary Conforming Delaunay Mesh Generation Juni 25, 2007 10 (49)

Delaunay Triangulation

Given a point set S 2 Rd. Any simplex is Delaunay if it has a circumscribed
ball B, such that int(B) \ S = ;. The Delaunay triangulation of S, D(S), is
formed by Delaunay simplices.

Boris N. Delaunay (1890-1980)

Delaunay B.N., Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i
Estestvennykh Nauk. (1934) 7:793–800.

,
3D Boundary Conforming Delaunay Mesh Generation Juni 25, 2007 10 (49)

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.7

Anisotropic Delaunay and Voronoi meshes

If metric tensor
derivatives, no triangle has angle < 20° as
measured by any point in the triangle.

Main Result
M is smooth with bounded

If metric tensor
derivatives, no triangle has angle < 20° as
measured by any point in the triangle.

Main Result
M is smooth with bounded

An anisotropic Delaunay mesh wrt a metric field
Labelle & Shewchuk (not always exists)

Anisotropic Delaunay surface mesh

Optimal Voronoi Tessellations with Hessian-based Anisotropy

Max Budninskiy
Caltech

Beibei Liu
Caltech

Fernando de Goes
Pixar

Yiying Tong
MSU

Pierre Alliez
Inria

Mathieu Desbrun
Caltech/Inria

Abstract
This paper presents a variational method to generate cell complexes
with local anisotropy conforming to the Hessian of any given con-
vex function and for any given local mesh density. Our formula-
tion builds upon approximation theory to offer an anisotropic ex-
tension of Centroidal Voronoi Tessellations which can be seen as a
dual form of Optimal Delaunay Triangulation. We thus refer to the
resulting anisotropic polytopal meshes as Optimal Voronoi Tessel-
lations. Our approach sharply contrasts with previous anisotropic
versions of Voronoi diagrams as it employs first-type Bregman di-
agrams, a generalization of power diagrams where sites are aug-
mented with not only a scalar-valued weight but also a vector-
valued shift. As such, our OVT meshes contain only convex cells
with straight edges, and admit an embedded dual triangulation that
is combinatorially-regular. We show the effectiveness of our tech-
nique using off-the-shelf computational geometry libraries.

Keywords: Anisotropic meshing, Bregman diagrams, centroidal
Voronoi tessellation, optimal Delaunay triangulation.

Concepts: •Mathematics of computing ! Mesh generation;

•Computing methodologies ! Shape modeling;

1 Introduction
From seismic waves to plasma filamentation and boundary layers
in fluids, many physical problems exhibit solutions changing more
significantly in one spatial direction than another. In order to re-
produce this type of effects numerically, it is often advantageous to
use a mesh with elements stretched along the geometry of the solu-
tion so that even low order (e.g., linear) basis functions can nicely
resolve the physical phenomenon with only a few elements. While
many efforts have successfully extended isotropic meshing meth-
ods for the construction of anisotropic triangulations [Chen and
Xu 2004; Loseille and Alauzet 2009], the generation of anisotropic
complexes formed by convex polyhedra has remained a challenge.

In this paper, we introduce a new meshing technique that gener-
ates anisotropic cell complexes of arbitrary 2D or 3D domains. At
its core, our approach optimizes the placement and shape of cells
by best approximating a convex function through linear finite func-
tions over convex polyhedral elements. This formulation leads to
a variational method that extends the machinery of Optimal Delau-
nay Triangulation to cell complexes, resulting in a new anisotropic
version of Centroidal Voronoi Tessellations. Our derivation also
reveals new degrees of freedom to control the local anisotropy of
polyhedral meshes, while still defining cell complexes that are dual
to combinatorially-regular triangulations.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c� 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SA ’16 Technical Papers, December 05 - 08, 2016, Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2980245

Figure 1: Anisotropic meshing. In this paper, we show that the
construction of an optimal piecewise-linear approximation of a
function over a cell complex (left) extends the isotropic notion of
Centroidal Voronoi Tessellations (CVT, top) to an anisotropic vari-
ant (middle & bottom) we call Optimal Voronoi Tessellation (OVT),
to stress its duality to Optimal Delaunay Triangulation (ODT). Cell
anisotropy (indicated by tightest ellipses) and density are indepen-
dently controlled, and the dual triangulation based on cell barycen-
ters is embedded and combinatorially-regular.

1.1 Related Work
We begin by briefly reviewing the main meshing approaches devel-
oped in scientific computing and geometry processing.

Isotropic meshing. Meshing techniques typically seek the gen-
eration of non-degenerate geometric primitives that offer good
condition numbers for common discrete isotropic operators like
the Laplacian. Delaunay meshes with local refinements (see,
e.g., [Shewchuk 1998]) have been shown most effective at generat-
ing such isotropic simplicial meshes. To further improve the qual-
ity of the resulting meshes, variational approaches were also intro-
duced. For instance, the use of Centroidal Voronoi Tessellations
(CVT) was proposed to generate isotropic cell decompositions of a
domain [Du et al. 1999]. A number of papers were later dedicated to
accelerate the computations involved in forming CVT meshes [Du
and Emelianenko 2006; Liu et al. 2009]. However, the isotropy of
Voronoi cells does not lead to isotropic Delaunay simplices in 3D,
and slivers can and will occur [Alliez et al. 2005]. To overcome this
limitation, the concept of Optimal Delaunay Triangulation (ODT)
was introduced as a dual version of CVT meshes [Chen and Xu
2004; Chen 2004]. Its implementation in 3D with details on the
sizing field computations and boundary handling was later investi-
gated by Alliez et al. [2005], and a hybrid approach mixing Delau-
nay refinement and ODT optimization was formulated in [Tournois
et al. 2009] to accelerate convergence and guarantee high-quality
results. Algorithmic and boundary-handling variants were also pro-
posed in [Chen and Holst 2011; Gao et al. 2012; Chen et al. 2014].

Optimal Voronoi tessellation, Budninskiy et al, TOG 2016
(Only valid for convex functions)

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.8

Input: a set of points, line segments, facets

1. Delaunay triangulation: create the DT from input points.

2. Boundary Recovery: insert all input segments and facets to
create a constrained (Delaunay) triangulation (CDT).

3. Mesh refinement: insert new points into the CDT according to
(user-defined) element shape and size requirements.

4. Mesh optimisation: improve the mesh quality by vertex
smoothing, edge/face swaps, and vertex insertions/deletions

Delaunay triangulation

Boundary recovery

Mesh refinement

Mesh optimisation

Output mesh

Input

A Delaunay-based Mesh Generation Framework (2d/3d)

10 HANG SI

z = 0

z = x2 + y2
a lower face

Figure 9. The projection of the lower faces of the convex hull is the
Delaunay triangulation.

This shows that �(p,q) equals precisely the power of the two-dimensional Euclidean
distance between p and q.

Consider two points p1 and p2 in the plane z = 0. We claim that q is closer to
p1 if and only if at the position q = (↵, �) , the plane H(p1) lies above (closer to the
paraboloid) than H(p2). It simply follows from the above vertical distance formula.

Lemma 1.2. Let p1,p2, . . . ,pn be a set of points in the plane z = 0. A point q belongs

to the Voronoi cell of the point pi, if and only if and only if H(pi) is the highest plane

(seen from z = +1) at q.

Therefore, the Voronoi diagram of p1,p2, . . . ,pn is simply the vertical projection,
down to z = 0, of the point-wise maxima of the downward-facing half spaces H(pi). Or
equivalent is the uppermost face of the arrangement defined by these planes.

2. Lawson’s flip algorithm

This section introduces the locally Delaunay condition for edges and proves the De-
launay lemma, which shows a crucial local property of Delaunay triangulations. This
Lemma suggests that one can construct Delaunay triangulation from any triangulation
by a sequence of edge flips. A classical Lawson’s flipping algorithm is introduced. This al-
gorithm’s correctness implies two fundamental results of planar triangulations, (1) among
all triangulations of the same point set, and the Delaunay triangulation maximizes the
minimum angle; and (2) the set of all triangulations of the point set is connected by
edge flips.

2.1. The Delaunay lemma. This section introduces a local condition for edges, shows
it implies a triangulation is Delaunay.

Let K be a triangulation of a point set S in R2. An edge eab 2 K is locally Delaunay

if either

(i) it is on the convex hull, or

Basic Properties

44 Configurations, Triangulations, Subdivisions, and Flips

3. The union of all these simplices equals conv(A). (Union Property.)

The first two properties are the definition of a (geometric) simplicial com-
plex. In other words: a triangulation of A is a simplicial complex with vertex
set contained in A and which covers conv(A).

In our definition we do not assume conv(A) to be full-dimensional. In
particular, we may speak of triangulations of a single point (there is one!),
or of triangulations of a face of conv(A), as in the following statement:

Lemma 2.1.3. Let T be a triangulation of a point configuration A and let
F be a face of conv(A). Then, the following is a triangulation of A⌅F:

TF := {� ⇤T : � � F} .

Proof. Easy. Left to the reader.Figure 2.6: The four triangulations of the point

configuration of Figure 2.3
Observe also that we do not require all the points of A to be used as

vertices in a triangulation. For example, the configuration of Figure 2.3 has
the four triangulations shown in Figure 2.6. Two of them use the five points
and have four triangles, and two use only four points and have two triangles.
Of course, all vertices of convA are used in all triangulations. Similarly,
the six points in Figure 2.5 have 18 triangulations, only 8 of which use all
points.

2.1.3 Regular triangulations

Our first goal is to show that every point configuration has at least one trian-
gulation. The method we are going to use is conceptually the simplest way
of getting triangulations of point configurations. It is surprisingly general
and it is central to the structure of the set of all triangulations of A. The
process is as follows, as illustrated in Figure 2.7. Let A = (p1, . . . ,pn) be a
point configuration in Rd :

Figure 2.7: The lifting construction.

1. Pick a “height function” ⇥ : A⇥ R (⇥ can be thought of as a vector
⇥ = (⇥1, . . . ,⇥n)⇤Rn, with ⇥i = ⇥(pi)) and consider the lifted point
configuration

A⇥ :=
�

p1 . . . pn
⇥1 . . . ⇥n

⇥
.

Hang Si An Introduction to Delaunay-based Mesh Generation 2 / 55

Voronoi Diagram in R3

All You Always Wanted to Know About Meshing · WIAS Day 2016, February 16 – 17, 2016 · Page 60
(135)

Voronoi Diagram to Delaunay Triangulation

Voronoi Cells Tetrahedra

All You Always Wanted to Know About Meshing · WIAS Day 2016, February 16 – 17, 2016 · Page 61
(135)

Delaunay triangulations

Dual of Voronoi diagrams empty circumsphere property projections of convex hulls

Figure from J. Pellerin’s thesis

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.10

Lawson’s Flip Algorithm [1972, 1977]
Lawson Flip Algorithm [Lawson 1977]

Let S = {p1, p2, ..., pn} be a finite set of points in R2.

Compute an initial triangulation T of a point set S .

while 9 a locally non-Delaunay edge ab 2 T
flip ab;

end while

CG 2013

for instance, in the context of interpolation. In contrast, the Delaunay triangulation
of the same point set (Figure 6.3b) looks much nicer, and we will discuss in the next
section how to get this triangulation.

(a) Scan triangulation. (b) Delaunay triangulation.

Figure 6.3: Two triangulations of the same set of 50 points.

Exercise 6.3 Describe an O(n log n) time algorithm to construct a scan triangulation
for a set of n points in R2.

On another note, if you look closely into the SLR-algorithm to compute planar convex
hull that was discussed in Chapter 3, then you will realize that we also could have used
this algorithm in the proof of Proposition 6.2. Whenever a point is discarded during
SLR, a triangle is added to the polygon that eventually becomes the convex hull.

In view of the preceding chapter, we may regard a triangulation as a plane graph:
the vertices are the points in P and there is an edge between two points p �= q, if and
only if there is a triangle with vertices p and q. Therefore we can use Euler’s formula to
determine the number of edges in a triangulation.

Lemma 6.4 Any triangulation of a set P � R2 of n points has exactly 3n�h�3 edges,
where h is the number of points from P on �conv(P).

Proof. Consider a triangulation T of P and denote by E the set of edges and by F the
set of faces of T . We count the number of edge-face incidences in two ways. Denote
I = {(e, f) � E � F : e � �f}.

On the one hand, every edge is incident to exactly two faces and therefore |I| = 2|E|.
On the other hand, every bounded face of T is a triangle and the unbounded face has h
edges on its boundary. Therefore, |I| = 3(|F| � 1) + h.

67

Hang Si si@wias-berlin.de An Introduction to Delaunay-based Mesh Generation and Adaptation 2017-08-02 16 / 66

x

a

b

q

pc

d

a

b
c

d
a

b
c

d

14 HANG SI

Algorithm: LawsonFlip(L)
Input: a stack L of edges of a triangulation K;
Output: the Delaunay triangulation;
1 while L 6= ; do
2 pop an edge eab from L;
3 if eab is not locally Delaunay then;
4 flip eab to ecd;
5 push edges eac, ecb, edb, eda on L;
6 endif
7 endwhile

Figure 14. The Lawson edge-flip algorithm.

Figure 15 shows an example of an input triangulation and a output (which is the
Delaunay triangulation) of this algorithm.

Figure 15. Lawson’s flip algorithm takes an arbitrary triangulation
(left) as input and returns the Delaunay triangulation (right).

2.2.3. Correctness and termination. The algorithm can be understood as gluing a se-
quence of tetrahedra. Flipping eab to ecd is likely gluing a tetrahedron ta0b0c0d0 from
below to the faces ta0b0c0 and ta0b0d0 , see Figure 16.

Once we glue ta0b0c0d0 we cannot glue another tetrahedron right below the lifted edge
ea0b0 . In other words, once we flip eab we cannot introduce eab again by some other flip.
This implies that this algorithm will eventually terminate when all locally non-Delaunay
edges are flipped. By the Delaunay lemma, the triangulation is Delaunay.

This also implies there are at most as many flips as there are edges connecting n points,
namely

�n
2

�
. Each flip takes constant time, hence the total running time is O(n2).

This algorithm can be viewed as an convex optimisation algorithm. It transforms
a lifted surface triangulation which is not convex into a convex surface in R3 whose
projection into the plane is the Delaunay triangulation of this point set. Figure 17
shows both the lifted and projected triangulations.

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.11

Correctness and runtime
DELAUNAY TRIANGULATIONS IN THE PLANE 15

z = 0 z = 0

z = x2 + y2

Figure 17. Top: Bottom: The lifted view of the Lawson’s flip algorithm
which transforms a non-convex surface (left) in 3d into a convex one
(right).

This algorithm is indeed a convex optimization algorithm. It transforms a lifted
surface triangulation, which is not convex, into a convex surface in R3 whose projection
into the plane is the Delaunay triangulation of this point set. Figure 17 shows both the
lifted and projected triangulations.

2.3. Optimal properties of Delaunay triangulations. The correctness of Lawson’s
flip algorithm implies several optimal properties of the Delaunay triangulation.

2.3.1. The MaxMin angle property.

Theorem 2.2. Among all triangulation of a finite point set S ⇢ R2
, the Delaunay

triangulation maximizes the minimum angle.

Proof. Each flip substitutes two new triangles for two old triangles. It, therefore, changes
six of the angles, see Figure 18 Left. The six old angles are:

a1, b1, a2, b2, a1 + a2, b1 + b2

and the six new angles are

c1, d1, c2, d2, c1 + c2, d1 + d2

We show that an old angle is at least as small for each of the six new angles.
Both c1 and a2 are opposite the same edge ebd. The locally Delaunay property of the

edge ecd implies that a lies outside the circumcircle of tcdb. Therefore, the new angle
c1 must larger than the old angle a2, see Figure 18 Right. By the same reason, we have
d1 � a1, c2 � b2, and d2 � b1.

It follows that an edge flip in Lawson’s algorithm does not decrease the smallest angle
in a triangulation. Since we can transform any triangulation K of S into the Delaunay
triangulation by a sequence of the same kind of flips, this implies that the smallest angle
in K is no larger than the smallest angle in the Delaunay triangulation. ⇤

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.12

Flip graph
DELAUNAY TRIANGULATIONS IN THE PLANE 17

2.4. The (undirected) flip graph. One can use flips to traverse the set of all triangu-
lations of a point set S. We can form a flip-graph G of S. Each triangulation is a node
of G, and each edge of G between two nodes u and v means there is a flip that changes
the triangulation u to v. Figure 19 shows an example. The termination of Lawson’s flip
algorithm implies that the flip-graph for any point set in the plane is connected, i.e., one
can go from any triangulation of S to any other triangulation.

28 - August - 2006 ICM 2006 - Madrid 22

The graph of triangulations of an n-gon

The graph of

flips berween

triangulations of

a hexagon

Figure 19. The flip graph of a set of the vertex set of a convex 6-gon.

Since this flip graph contains all triangulations of a point set, there are many interest-
ing properties of this graph to be studied; refer to the work of Hurtado et al [8]. Here we
show an example that needs O(n2) edge flips. This is a special construction (by P. Bose
and F. Hurtado [2]) of a non-convex polygon shown in Figure 20. We have a sequence
of n � 1 ones and n � 1 zeros. A flip is possible between a 1 triangle and a 0 triangle.
The two adjacent numbers are switched.

Institute of Software Technology

Alexander Pilz 14.10.2015 Triangulations

A Lower Bound

0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0

��

11000101 11001001

• We have a sequence of n � 1 ones and n � 1 zeros.
• A flip is possible between a 1 triangle and a 0 triangle.
• The two adjacent numbers are switched.

26

Institute of Software Technology

Alexander Pilz 14.10.2015 Triangulations

A Lower Bound

00000 ...11111 11111 ...00000

• “All zeros have to be moved to the right.”
• There are n � 1 zeros and n � 1 ones.
• Therefore we need at least (n � 1)2 flips.
• The flip graph has quadratic diameter.

27

Figure 20. A lower bound example (Figures from A. Pilz (IST TU-Graz)).

DELAUNAY TRIANGULATIONS IN THE PLANE 17

2.4. The (undirected) flip graph. One can use flips to traverse the set of all triangu-
lations of a point set S. We can form a flip-graph G of S. Each triangulation is a node
of G, and each edge of G between two nodes u and v means there is a flip that changes
the triangulation u to v. Figure 19 shows an example. The termination of Lawson’s flip
algorithm implies that the flip-graph for any point set in the plane is connected, i.e., one
can go from any triangulation of S to any other triangulation.

28 - August - 2006 ICM 2006 - Madrid 22

The graph of triangulations of an n-gon

The graph of

flips berween

triangulations of

a hexagon

Figure 19. The flip graph of a set of the vertex set of a convex 6-gon.

Since this flip graph contains all triangulations of a point set, there are many interest-
ing properties of this graph to be studied; refer to the work of Hurtado et al [8]. Here we
show an example that needs O(n2) edge flips. This is a special construction (by P. Bose
and F. Hurtado [2]) of a non-convex polygon shown in Figure 20. We have a sequence
of n � 1 ones and n � 1 zeros. A flip is possible between a 1 triangle and a 0 triangle.
The two adjacent numbers are switched.

Institute of Software Technology

Alexander Pilz 14.10.2015 Triangulations

A Lower Bound

0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0

��

11000101 11001001

• We have a sequence of n � 1 ones and n � 1 zeros.
• A flip is possible between a 1 triangle and a 0 triangle.
• The two adjacent numbers are switched.

26

Institute of Software Technology

Alexander Pilz 14.10.2015 Triangulations

A Lower Bound

00000 ...11111 11111 ...00000

• “All zeros have to be moved to the right.”
• There are n � 1 zeros and n � 1 ones.
• Therefore we need at least (n � 1)2 flips.
• The flip graph has quadratic diameter.

27

Figure 20. A lower bound example (Figures from A. Pilz (IST TU-Graz)).

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.13

DELAUNAY TRIANGULATIONS IN THE PLANE 19

Algorithm: IncrementalFlip(S = {p1, . . . ,pn})
Input: a sequence S of n points in R2;
Output: the Delaunay triangulation D of S;
1 initialize D0 with only one larger triangle txyz;
2 for i = 1 to n do
3 find the triangle ⌧ 2 Di�1 containing pi;
4 insert pi by a 1-3 flip;
5 initial the stack L with link edges of pi;
6 LawsonFlip(L);
7 endfor
8 remove all triangles containing x, y, and z from Dn;

Figure 22. The incremental-flip algorithm.

edges which are not locally Delaunay in current triangulation. We will take advantage
of the following facts after the insertion of pi:

• Any edge in Di�1, which is not a link edge of pi remains locally Delaunay. The
edges inside the star of pi are locally Delaunay as well.

• Only link edges of pi in Di�1 might not be locally Delaunay.

By these facts, the initial stack L only contains the link edges of pi. Lawson’s flip algo-
rithm guarantees that the termination of the flip process and the result is the Delaunay
triangulation Di of Si. Figure 23 shows an example of this algorithm.

p

a

b

c c

b

a

p

Figure 23. Recovery Delaunay property by the Lawson’s flip algorithm.

3.3. Worst-case running time. The running time of this algorithm consists of two
parts:

(1) the time to locate the triangle ⌧ containing the vertex pi; and
(2) the time to perform flips.

This section focuses on (2) and considers the worst case. It estimates the maximum
number of flips that may be performed within this algorithm.

Any triangle in Di�1 whose circumcircle does not contain the new vertex pi remains
a Delaunay triangle in Di�1. This fact shows that every new triangle in Di must have
pi as a vertex. This implies that all flips occur right around pi. Each edge flip increases

DELAUNAY TRIANGULATIONS IN THE PLANE 19

Algorithm: IncrementalFlip(S = {p1, . . . ,pn})
Input: a sequence S of n points in R2;
Output: the Delaunay triangulation D of S;
1 initialize D0 with only one larger triangle txyz;
2 for i = 1 to n do
3 find the triangle ⌧ 2 Di�1 containing pi;
4 insert pi by a 1-3 flip;
5 initial the stack L with link edges of pi;
6 LawsonFlip(L);
7 endfor
8 remove all triangles containing x, y, and z from Dn;

Figure 22. The incremental-flip algorithm.

edges which are not locally Delaunay in current triangulation. We will take advantage
of the following facts after the insertion of pi:

• Any edge in Di�1, which is not a link edge of pi remains locally Delaunay. The
edges inside the star of pi are locally Delaunay as well.

• Only link edges of pi in Di�1 might not be locally Delaunay.

By these facts, the initial stack L only contains the link edges of pi. Lawson’s flip algo-
rithm guarantees that the termination of the flip process and the result is the Delaunay
triangulation Di of Si. Figure 23 shows an example of this algorithm.

p

a

b

c c

b

a

p

Figure 23. Recovery Delaunay property by the Lawson’s flip algorithm.

3.3. Worst-case running time. The running time of this algorithm consists of two
parts:

(1) the time to locate the triangle ⌧ containing the vertex pi; and
(2) the time to perform flips.

This section focuses on (2) and considers the worst case. It estimates the maximum
number of flips that may be performed within this algorithm.

Any triangle in Di�1 whose circumcircle does not contain the new vertex pi remains
a Delaunay triangle in Di�1. This fact shows that every new triangle in Di must have
pi as a vertex. This implies that all flips occur right around pi. Each edge flip increases

Incremental flip algorithm

the star of pi

the link of pi

pi

pi

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.14

Flipping

Radon’s partitions[Radon 1921]: Any set of d + 2 points in R
d can be partitioned

into two disjoint sets whose convex hulls intersect.

1-to-3 flip

2-to-2 flip

Hang Si si@wias-berlin.de () Tetrahedral Mesh Generation December 25, 2012 31 / 113

Flipping

Radon’s partitions[Radon 1921]: Any set of d + 2 points in R
d can be partitioned

into two disjoint sets whose convex hulls intersect.

1-to-3 flip

2-to-2 flip

Hang Si si@wias-berlin.de () Tetrahedral Mesh Generation December 25, 2012 31 / 113

Flipping

In case of d = 3, a set of 5 points in R
3 and no 4 of them are coplanar has two such

partitions, (1, 4) and (2, 3), which correspond to a 1-to-4 flip and a 2-to-3 flip.

1-to-4 and 4-to-1 2-to-3 and 3-to-2

Hang Si si@wias-berlin.de () Tetrahedral Mesh Generation December 25, 2012 32 / 113

Flips in any dimension

2d 3d

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.15

Flips in 3d
Lemma [Joe 1989]: There exists a 3d non-Delaunay triangulation which
contains a cycle of non-locally Delaunay and unflippable faces.

Joe’s example [Joe 1989]

face (a,b,c) is unflippable

Termination of the Flip Algorithm

In a tetrahedralization, if an edge is shared by more than 3 tetrahedra, then a 3-to-2
is not possible.

Let Di be a tetrahedralization after adding pi when it is not yet a Delaunay
tetrahedralization of Si . One can show that Di contains at least one link triangle
that is not locally Delaunay and flippable. Use the weighted distance relation to
prove this fact.

a

b

e

d

c

pi

c

a

bd

A face that is unflippable A proof of the termination
[Edelsbrunner 2001]

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 36 / 154

Constrained Delaunay Tetrahedralizations

CDTs have similar properties as those of DTs [Shewchuk 2008].

A triangular face is locally Delaunay if two tetrahedra sharing it have no vertex
inside each others’ circumspheres.

The Locally Delaunay Lemma (for CDT): If every triangle in T not in a polygon of
X is locally Delaunay, then T is a CDT of X [Shewchuk 1998].

a

bc

d

e

a locally Delaunay face a constrained Delaunay
(shaded) tetrahedralization (CDT)

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 68 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.16

Incremental flip in 3d
Randomized Flip Algorithm [Edelsbrunner and Shah 1996]

Let S = {p1, p2, ..., pn} be a finite set of points in R
3. And we assume S is in

general position.

Let [w, x, y, z] be a su�ciently large tetrahedron that contains all points of S .

1 Let D0 consists of only the tetrahedron [w, x, y, z];
2 for i = 1 to n do
3 find [p, q, r, s] 2 Di that contains pi ;
4 add pi with a 1-to-4 flip;
5 while 9 triangle [a, b, c] not locally Delaunay;
6 flip [a, b, c];
7 endwhile
8 endfor

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 35 / 154

Edelsbrunner, H. & Shah, N. R. Incremental topological flipping works for regular
triangulations, Algorithmica, 1996, 15, 223-241

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.17

Implementation choices
Randomized Flip Algorithm [Edelsbrunner and Shah 1996]

Let S = {p1, p2, ..., pn} be a finite set of points in R
3. And we assume S is in

general position.

Let [w, x, y, z] be a su�ciently large tetrahedron that contains all points of S .

1 Let D0 consists of only the tetrahedron [w, x, y, z];
2 for i = 1 to n do
3 find [p, q, r, s] 2 Di that contains pi ;
4 add pi with a 1-to-4 flip;
5 while 9 triangle [a, b, c] not locally Delaunay;
6 flip [a, b, c];
7 endwhile
8 endfor

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 35 / 154

Use Bowyer-Watson
cavity algorithm

sort the input points by BRIO + Hilbert order

no need of this step when using
an infinite vertex

��� #*#-*0(3"1):

<��> 3BJOBME -¶IOFS
 +PTF $BNCFSPT
 BOE .BSTIBM .FSSJBN� 1BSBMMFM VOTUSVD�
UVSFE HSJE HFOFSBUJPO� $PNQVUFS .FUIPET JO "QQMJFE .FDIBOJDT BOE &O�
HJOFFSJOH
 ��	�
����ۗ���
 .BSDI �����

<��> $©MFTUJO .BSPU
 +FBOOF 1FMMFSJO
 +POBUIBO -BNCSFDIUT
 BOE +FBO�'SBO§PJT
3FNBDMF� 5PXBSE POF CJMMJPO UFUSBIFESB QFSNJOVUF� 1SPDFEJB &OHJOFFSJOH

QBHF �
 �����

<��> $©MFTUJO .BSPU
 +FBOOF 1FMMFSJO
 BOE +FBO�'SBO§PJT 3FNBDMF� 0OF NB�
DIJOF
 POF NJOVUF
 UISFF CJMMJPO UFUSBIFESB� *OUFSOBUJPOBM +PVSOBM GPS /V�
NFSJDBM .FUIPET JO &OHJOFFSJOH
 ���	�
����ۗ���
 �����

<��> $©MFTUJO .BSPU BOE +FBO�'SBO§PJT 3FNBDMF� फ़BMJUZ UFUSBIFESBM NFTI
HFOFSBUJPO XJUI)95
 BVH �����

<��> $©MFTUJO .BSPU
 ,JMJBO 7FSIFUTFM
 BOE +FBO�'SBO§PJT 3FNBDMF� 3FWJWJOH
UIF 4FBSDI GPS 0QUJNBM 5FUSBIFESBMJ[BUJPOT� *O 1SPDFFEJOHT PG UIF ��UI *O�
UFSOBUJPOBM .FTIJOH 3PVOEUBCMF
 #V੖BMP
 /FX :PSL
 64"
 'FCSVBSZ �����
;FOPEP�

<��> 0TDBS .BSUJOF[�3VCJ
 4UFGBO 7FSIPFWFO
 .BBSUFO WBO .FFSTCFSHFO
 BOE
1FUFS WBO 0PTUFSPN� 5BNJOH UIF CFBTU� 'SFF BOE PQFO�TPVSDF NBTTJWF
QPJOU DMPVE XFC WJTVBMJ[BUJPO� QBHF ��
 �����

<��> %VBOF .FSSJMM BOE "OESFX (SJNTIBX�)JHI QFSGPSNBODF BOE TDBMBCMF
SBEJY TPSUJOH� " DBTF TUVEZ PG JNQMFNFOUJOH EZOBNJD QBSBMMFMJTN GPS
(16 DPNQVUJOH� 1BSBMMFM 1SPDFTTJOH -FࡇFST
 ��	��
����ۗ���
 �����

<��> .BSFL ,S[ZT[UPG .JT[UBM
 +BLPC "OESFBT #¦SFOU[FO
 'SBO§PJT "OUPO
 BOE
,FOOZ &SMFCFO� 5FUSBIFESBM .FTI *NQSPWFNFOU 6TJOH .VMUJ�GBDF 3FUSJ�
BOHVMBUJPO� *O #SF॒8� $MBSL
 FEJUPS
 1SPDFFEJOHT PG UIF ��UI *OUFSOBUJPOBM
.FTIJOH 3PVOEUBCMF
 QBHFT ���ۗ���� 4QSJOHFS #FSMJO)FJEFMCFSH
 #FSMJO

)FJEFMCFSH
 �����

<��> "TIXJO /BOKBQQB� %FMBVOBZ USJBOHVMBUJPO JO 3� PO UIF (16� QBHF ����

<��> /JDIPMBT "� /ZTUSPN
 .JDIBFM +� -FWJOF
 3BMQI ;� 3PTLJFT
 BOE +� 3BZ
4DP॒� #SJEHFT� " VOJRVFMZ ੘FYJCMF IQD SFTPVSDF GPS OFX DPNNVOJUJFT
BOE EBUB BOBMZUJDT� *O 1SPDFFEJOHT PG UIF ���� 94&%& $POGFSFODF� 4DJFO�
UJटD "EWBODFNFOUT &OBCMFE CZ &OIBODFE $ZCFSJOGSBTUSVDUVSF
 94&%& ۝��

QBHFT ����ۗ����
 /FX :PSL
 /:
 64"
 ����� "$.�

<��> 5 0LVTBOZB BOE + 1FSBJSF� �E QBSBMMFM VOTUSVDUVSFE NFTI HFOFSBUJPO

�����

Use filtered robust predicates to
do point orientation3d and

point-in-sphere tests

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.18

Flips in 3d
Lemma [Joe 1989]: There exists a 3d non-Delaunay triangulation which
contains a cycle of non-locally Delaunay and unflippable faces.

Joe’s example [Joe 1989]

face (a,b,c) is unflippable

Termination of the Flip Algorithm

In a tetrahedralization, if an edge is shared by more than 3 tetrahedra, then a 3-to-2
is not possible.

Let Di be a tetrahedralization after adding pi when it is not yet a Delaunay
tetrahedralization of Si . One can show that Di contains at least one link triangle
that is not locally Delaunay and flippable. Use the weighted distance relation to
prove this fact.

a

b

e

d

c

pi

c

a

bd

A face that is unflippable A proof of the termination
[Edelsbrunner 2001]

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 36 / 154

Constrained Delaunay Tetrahedralizations

CDTs have similar properties as those of DTs [Shewchuk 2008].

A triangular face is locally Delaunay if two tetrahedra sharing it have no vertex
inside each others’ circumspheres.

The Locally Delaunay Lemma (for CDT): If every triangle in T not in a polygon of
X is locally Delaunay, then T is a CDT of X [Shewchuk 1998].

a

bc

d

e

a locally Delaunay face a constrained Delaunay
(shaded) tetrahedralization (CDT)

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 68 / 154

Open problem: the connectedness of the general flip graphs in 3d and 4d.

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.19

Weighted Delaunay Triangulations

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.20

Weighted Delaunay triangulations

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.21

Non-weighted Delaunay Triangulations
Non-regular subdivisions

A subdivision of a point set S is non-regular if it is not a regular subdivision of S .

There are many non-regular subdivisions. For example, most triangulations of cyclic
polytopes are non-regular [Rambau 1996].

W1 W2

W1 W2 W1 W2

W1 W2

Figure 5: Four examples of Radon points (white circles) and the
flips related to them.

FLIP(T, g)
{ T is a triangulation. g is a hyperface to flip. This procedure
assumes g can be flipped. Comments below identify places
where this assumption could fail. }
Let s and t be the d-simplices that include g
WR � �
WC � { the vertices of s and t not shared by g}
j � d
for each ridge (i.e. (d � 2)-simplex) r of g

v � the vertex of g not shared by r
✓ � the exterior dihedral angle of s [t at r
if ✓ > 180�

WR � WR [{v}
else if ✓ < 180�

WC � WC [{v}
else j � j � 1 { v not in minimal affinely dep. subset }

TR � {conv(WR [WC � {v}) : v 2 WC}
TC � {conv(WR [WC � {v}) : v 2 WR}
if j = d

{ note: if the simplices in TR are absent from T ,
the flip cannot be performed }

Delete each d-simplex in TR from T
Add each d-simplex in TC to T

else
{ degenerate flip; the members of TR, TC are j-simplices }
Let y be any simplex in TR

for each (d � j � 1)-simplex z such that conv(y [z) is
a d-simplex of T

{ note: if the simplices deleted below are absent from T ,
the flip cannot be performed }

for each j-simplex y0 in TR

Delete the d-simplex conv(y0 [z) from T
for each j-simplex y0 in TC

Add the d-simplex conv(y0 [z) to T

Figure 6: Algorithm for performing a bistellar flip (except the flips
that insert a new vertex). An implementation should not calculate �;
rather, the tests “� <> 180�” should branch based on the results of
a vertex orientation test.

members of T1 are faces of d-simplices in T which must be flipped
as well, as the degenerate examples in Figure 3 illustrate. The de-
tails are embodied in the last six lines of the pseudocode for the
FLIP procedure in Figure 6.
FLIP determines what type of bistellar flip to perform to remove

a hyperface g and the two d-simplices s and t that share it. The
procedure first determines the vertex sets WR, the vertices of the
common face removed by the flip, andWC , the vertices of the com-
mon face created by the flip. Let W = WR [WC . FLIP removes
the simplices TR = {conv(W � {v}) : v 2 WC}, and creates
the simplices TC = {conv(W � {v}) : v 2 WR}. If g was lo-

0 0

0

1

1
1

(a) (b)

Figure 7: Stuck triangulations. (a) Several views of Joe’s example
of seventeen tetrahedra for which no triangular face that is not locally
Delaunay can be flipped. (b) Edelsbrunner and Shah’s example of
seven triangles for which no edge that is not locally regular (dashed
edges) can be flipped. Imagine that you are viewing the lifted trian-
gulation from directly underneath, and larger nodes are closer to you.
The number next to each vertex is the xd+1-coordinate to which it is
lifted (i.e. its distance from you). The regular triangulation of these
vertices is the outer triangle; the inner vertices should be submerged.

cally regular before the flip occurred, then the simplices in TR (plus
their lower-dimensional faces) formed the weighted Delaunay tri-
angulation ofW . FLIP is called at the moment when g is no longer
locally regular. At that moment, the shared face conv(WR) is no
longer constrained regular, so neither conv(WR) nor any simplex
that includes it can remain in the CDT. After the flip, the simplices
in TC , plus their lower-dimensional faces, are the weighted Delau-
nay triangulation of W instead. TR and TC are j-dimensional, so
if j < d, FLIP removes every d-simplex that has a face in TR, and
creates new d-simplices that each have a face in TC .
There are several circumstances annotated in the code in which

it might be impossible to perform a flip that eliminates g, because
the initial triangulation is missing some of the simplices needed for
a flip to take place. CDTs introduce more such cases, because flips
are not allowed to penetrate constraining facets.
The main obstacle to designing a flip algorithm is that the algo-

rithm might get stuck if it cannot perform a flip that makes progress
toward a CDT. This is true even for unconstrained regular triangula-
tions. Figure 7(a) depicts Joe’s example [12] of a tetrahedralization
whose locally non-Delaunay faces cannot be flipped. Figure 7(b) is
a two-dimensional example of Edelsbrunner and Shah [10], wherein
a flip algorithm gets stuck while trying to produce a weighted De-
launay triangulation. (For the special case of two-dimensional un-
weighted PLCs, flipping locally non-Delaunay edges always yields
a CDT eventually [14, 16].)
Joe [13] shows that, if just one vertex (at a time) is inserted into

a Delaunay triangulation of any dimension, flips can restore the
regularity of the triangulation without needing a priority queue to
avoid getting stuck. Edelsbrunner and Shah [10] show that the same
is true for regular triangulations. Unfortunately, these results do
not extend to facet insertion or deletion. The flip algorithms in the
next section avoid getting stuck by using a priority queue to control
the order in which flips occur, and scheduling the vertex weights
carefully to ensure that constraining facets are respected.
For these algorithms, a critical aspect of scheduling is that the

vertex weights must be perturbed. The purpose of the weight per-
turbations is to ensure that the retriangulation performed at any in-
stant in time is never more complicated than a bistellar flip. Sec-
tion 5 describes a symbolic perturbation method that ensures that
the flip algorithms are correct. Each update algorithm requires that
the input triangulation is a weighted CDT consistent with the per-
turbation method.
For more discussion of bistellar flips, see Lawson [15], Edels-

brunner and Shah [10], and de Loera, Santos, and Urrutia [6].

A non-regular triangulation

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 22 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.22

The acyclic theorem [Edelsbrunner 1990]

252 H. EDELSBR,UNNEP~

Fig. 1. The three triangles from a cycle in the in_front/behind relation

the above/below relation 1 for the cells is acyclic a data structure that takes O(m)
storage and O(logem) query t imels given in [2] (here m is the total number of faces
of the cell complex). No data structure is known for the general case (for cells with
cycles in the relation) that comes even close to this efficient performance.

The main result of this note is that if the objects are the faces of a certain kind of
cell complex in E d, then the in_front/behind relation is acyclic no matter where the
viewpoint is chosen. More specifically, the relation is acyclic for all cell complexes in
E d that can be obtained by projecting the boundary complex of a convex polytope
in E d+l. For example, the Delaunay triangulation of any finite point set is a cell
complex of this kind. A special case of this result (for two-dimensional Delannay
triangulations) was obtained earlier in [6]. Section 2 reviews Delaunay triangulations,
related geometric structures, and some of their properties. In Section 3 we prove the
acyclicity result for the cells of a d-dimensional Delaunay triangulation. In Section
4 we obtain the general form of the acyclic result. Finally, we offer some remarks in
Section 5.

2. D e l a u n a y T r i a n g u l a t i o n s a n d R e l a t e d S t r u c t u r e s

The most intuitive way to introduce Delaunay triangulations uses so-called
Voronoi diagrams. The former are named after Boris Delaunay, also Delone, for
his pioneering work in [3] which is dedicated to Georges Voronoi, the namesake for
the latter [9].

Let S be a set of n points in E d. The Voronoi region of a point p C S is the set

V(p) = {x E Ed [5(x,p) < 5(x,q) for all q E S - {p}},

where fi is the Euclidean distance function. V(p) is the intersection of n - 1 open
half-spaces and thus aconvex polyhedron. The Voronoi diagram of S, V(S), is the
cell complex whose cells are the Voronoi regions of the points is S (see Figure 2). We
define the cells and the faces in their boundaries as relatively open sets so that the
collection of all faces of V(S), from dimensionality 0 through d, define a parti t ion of

1 This is the in_front/behind relation for the viewpoint at (0, O, oo).

2
6

1

5

4

3

a view pointF1

F2

F3

F1 � F2 � F3 � F1 t1,4,6 � t3,5,6 � t2,4,5 � t1,4,6

Figure 4: Cycles of simplifies in the in front/behind relation. Left: the three
triangles forms a cycle with respect to your eye position (Courtesy of [5]). Right:
the three triangles form a cycle with respect to the fixed point.

2−2 flip

a

d

a

d

c c

b b

a b

d
c

a b

d
c

3−1 flip

a b

c
d

cc

d

a b

c
d

d

ba a b

1−3 flip

Figure 5: Flips in the plane and their interpretation in R3.

triangulation is shown in (2). The triangulation in (3) is non-regular. Moreover,
it is the only non-regular triangulation for this point set.

Given a triangulation T of A, it is in general not obvious to determine
whether it is regular or not. One can use linear program to check it whether
there exists a height function or not. Another way is to check some properties
that only hold for regular triangulations. One of such useful properties are
the “acyclic property” of regular triangulations proven by Edelsbrunner [5]. It
states that from any fixed viewpoint, the in front/behind relation for simplices of
regular triangulations forms no cycle. This means, non-regular triangulations
must contain cycles of simplices. The cycle with respect to the non-regular
triangulation in Figure 3 (3) is shown in Figure 4 Right. This property can
be checked e�ciently by a flip algorithm. We will discuss this flip algorithm in
detail in Section ??.

1.2 Flips and the flip graph of triangulations

Flips are local changes that transform one triangulation into another. Let V be
a set of 4 points in R2. Assuming no three points of V are collinear. Then there
are exactly two triangulations of V . A flip means the change of one triangulation
into the other. We can distinguish the types of flips by the number of triangles
in the triangulations before and after the flip. Hence there are 2-2 flips (or
edge-flips), 1-3 flips (or vertex-insertion), and 3-1 flips (or vertex-deletion). A
geometric view of a flip in R2 is that it exchanges the “lower” and “upper” faces
of a tetrahedron in R3, see Figures 5. Flips in three and higher dimensions
are defined in the same way. The types of flips are exactly the numbers in the
Radon’s partitions of d + 2 points in Rd [11].

5

The Acyclic Theorem

The in front/behind relation: Let x be a point and P and Q be two disjoint convex
objects in R

d . We say that P is in front of Q with respect to x if there is a ray L
starting at x that first passes through P and then through Q.

Theorem [Edelsbrunner 1990]: The in front/behind relation defined for the faces
of any regular subdivision and for fixed viewpoint x in R

d is acyclic.

252 H. EDELSBR,UNNEP~

Fig. 1. The three triangles from a cycle in the in_front/behind relation

the above/below relation 1 for the cells is acyclic a data structure that takes O(m)
storage and O(logem) query t imels given in [2] (here m is the total number of faces
of the cell complex). No data structure is known for the general case (for cells with
cycles in the relation) that comes even close to this efficient performance.

The main result of this note is that if the objects are the faces of a certain kind of
cell complex in E d, then the in_front/behind relation is acyclic no matter where the
viewpoint is chosen. More specifically, the relation is acyclic for all cell complexes in
E d that can be obtained by projecting the boundary complex of a convex polytope
in E d+l. For example, the Delaunay triangulation of any finite point set is a cell
complex of this kind. A special case of this result (for two-dimensional Delannay
triangulations) was obtained earlier in [6]. Section 2 reviews Delaunay triangulations,
related geometric structures, and some of their properties. In Section 3 we prove the
acyclicity result for the cells of a d-dimensional Delaunay triangulation. In Section
4 we obtain the general form of the acyclic result. Finally, we offer some remarks in
Section 5.

2. D e l a u n a y T r i a n g u l a t i o n s a n d R e l a t e d S t r u c t u r e s

The most intuitive way to introduce Delaunay triangulations uses so-called
Voronoi diagrams. The former are named after Boris Delaunay, also Delone, for
his pioneering work in [3] which is dedicated to Georges Voronoi, the namesake for
the latter [9].

Let S be a set of n points in E d. The Voronoi region of a point p C S is the set

V(p) = {x E Ed [5(x,p) < 5(x,q) for all q E S - {p}},

where fi is the Euclidean distance function. V(p) is the intersection of n - 1 open
half-spaces and thus aconvex polyhedron. The Voronoi diagram of S, V(S), is the
cell complex whose cells are the Voronoi regions of the points is S (see Figure 2). We
define the cells and the faces in their boundaries as relatively open sets so that the
collection of all faces of V(S), from dimensionality 0 through d, define a parti t ion of

1 This is the in_front/behind relation for the viewpoint at (0, O, oo).

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 26 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.23

The Flip Graph of Regular Triangulations

Theorem[Gelfand-Kapranov-Zelevinskii 1990]: For every set A of n points in Rd ,
there is a polytope ⌃(A) of dimension n � d � 1 with the following correspondence:

regular triangulation of A ! vertices of ⌃(A)
flips between them ! edges of ⌃(A)

poset of regular triangulation of A ! poset of faces of ⌃(A)

This is called the secondary polytope of A.

Corollary: The flip graph of regular triangulations is connected.

44 Configurations, Triangulations, Subdivisions, and Flips

3. The union of all these simplices equals conv(A). (Union Property.)

The first two properties are the definition of a (geometric) simplicial com-
plex. In other words: a triangulation of A is a simplicial complex with vertex
set contained in A and which covers conv(A).

In our definition we do not assume conv(A) to be full-dimensional. In
particular, we may speak of triangulations of a single point (there is one!),
or of triangulations of a face of conv(A), as in the following statement:

Lemma 2.1.3. Let T be a triangulation of a point configuration A and let
F be a face of conv(A). Then, the following is a triangulation of A⌅F:

TF := {� ⇤T : � � F} .

Proof. Easy. Left to the reader.Figure 2.6: The four triangulations of the point

configuration of Figure 2.3
Observe also that we do not require all the points of A to be used as

vertices in a triangulation. For example, the configuration of Figure 2.3 has
the four triangulations shown in Figure 2.6. Two of them use the five points
and have four triangles, and two use only four points and have two triangles.
Of course, all vertices of convA are used in all triangulations. Similarly,
the six points in Figure 2.5 have 18 triangulations, only 8 of which use all
points.

2.1.3 Regular triangulations

Our first goal is to show that every point configuration has at least one trian-
gulation. The method we are going to use is conceptually the simplest way
of getting triangulations of point configurations. It is surprisingly general
and it is central to the structure of the set of all triangulations of A. The
process is as follows, as illustrated in Figure 2.7. Let A = (p1, . . . ,pn) be a
point configuration in Rd :

Figure 2.7: The lifting construction.

1. Pick a “height function” ⇥ : A⇥ R (⇥ can be thought of as a vector
⇥ = (⇥1, . . . ,⇥n)⇤Rn, with ⇥i = ⇥(pi)) and consider the lifted point
configuration

A⇥ :=
�

p1 . . . pn
⇥1 . . . ⇥n

⇥
.

W1 W2

W1 W2 W1 W2

W1 W2

Figure 5: Four examples of Radon points (white circles) and the
flips related to them.

FLIP(T, g)
{ T is a triangulation. g is a hyperface to flip. This procedure
assumes g can be flipped. Comments below identify places
where this assumption could fail. }
Let s and t be the d-simplices that include g
WR � �
WC � { the vertices of s and t not shared by g}
j � d
for each ridge (i.e. (d � 2)-simplex) r of g

v � the vertex of g not shared by r
� � the exterior dihedral angle of s [t at r
if � > 180�

WR � WR [{v}
else if � < 180�

WC � WC [{v}
else j � j � 1 { v not in minimal affinely dep. subset }

TR � {conv(WR [WC � {v}) : v 2 WC}
TC � {conv(WR [WC � {v}) : v 2 WR}
if j = d

{ note: if the simplices in TR are absent from T ,
the flip cannot be performed }

Delete each d-simplex in TR from T
Add each d-simplex in TC to T

else
{ degenerate flip; the members of TR, TC are j-simplices }
Let y be any simplex in TR

for each (d � j � 1)-simplex z such that conv(y [z) is
a d-simplex of T

{ note: if the simplices deleted below are absent from T ,
the flip cannot be performed }

for each j-simplex y0 in TR

Delete the d-simplex conv(y0 [z) from T
for each j-simplex y0 in TC

Add the d-simplex conv(y0 [z) to T

Figure 6: Algorithm for performing a bistellar flip (except the flips
that insert a new vertex). An implementation should not calculate �;
rather, the tests “� <> 180�” should branch based on the results of
a vertex orientation test.

members of T1 are faces of d-simplices in T which must be flipped
as well, as the degenerate examples in Figure 3 illustrate. The de-
tails are embodied in the last six lines of the pseudocode for the
FLIP procedure in Figure 6.
FLIP determines what type of bistellar flip to perform to remove

a hyperface g and the two d-simplices s and t that share it. The
procedure first determines the vertex sets WR, the vertices of the
common face removed by the flip, andWC , the vertices of the com-
mon face created by the flip. Let W = WR [WC . FLIP removes
the simplices TR = {conv(W � {v}) : v 2 WC}, and creates
the simplices TC = {conv(W � {v}) : v 2 WR}. If g was lo-

0 0

0

1

1
1

(a) (b)

Figure 7: Stuck triangulations. (a) Several views of Joe’s example
of seventeen tetrahedra for which no triangular face that is not locally
Delaunay can be flipped. (b) Edelsbrunner and Shah’s example of
seven triangles for which no edge that is not locally regular (dashed
edges) can be flipped. Imagine that you are viewing the lifted trian-
gulation from directly underneath, and larger nodes are closer to you.
The number next to each vertex is the xd+1-coordinate to which it is
lifted (i.e. its distance from you). The regular triangulation of these
vertices is the outer triangle; the inner vertices should be submerged.

cally regular before the flip occurred, then the simplices in TR (plus
their lower-dimensional faces) formed the weighted Delaunay tri-
angulation ofW . FLIP is called at the moment when g is no longer
locally regular. At that moment, the shared face conv(WR) is no
longer constrained regular, so neither conv(WR) nor any simplex
that includes it can remain in the CDT. After the flip, the simplices
in TC , plus their lower-dimensional faces, are the weighted Delau-
nay triangulation of W instead. TR and TC are j-dimensional, so
if j < d, FLIP removes every d-simplex that has a face in TR, and
creates new d-simplices that each have a face in TC .
There are several circumstances annotated in the code in which

it might be impossible to perform a flip that eliminates g, because
the initial triangulation is missing some of the simplices needed for
a flip to take place. CDTs introduce more such cases, because flips
are not allowed to penetrate constraining facets.
The main obstacle to designing a flip algorithm is that the algo-

rithm might get stuck if it cannot perform a flip that makes progress
toward a CDT. This is true even for unconstrained regular triangula-
tions. Figure 7(a) depicts Joe’s example [12] of a tetrahedralization
whose locally non-Delaunay faces cannot be flipped. Figure 7(b) is
a two-dimensional example of Edelsbrunner and Shah [10], wherein
a flip algorithm gets stuck while trying to produce a weighted De-
launay triangulation. (For the special case of two-dimensional un-
weighted PLCs, flipping locally non-Delaunay edges always yields
a CDT eventually [14, 16].)
Joe [13] shows that, if just one vertex (at a time) is inserted into

a Delaunay triangulation of any dimension, flips can restore the
regularity of the triangulation without needing a priority queue to
avoid getting stuck. Edelsbrunner and Shah [10] show that the same
is true for regular triangulations. Unfortunately, these results do
not extend to facet insertion or deletion. The flip algorithms in the
next section avoid getting stuck by using a priority queue to control
the order in which flips occur, and scheduling the vertex weights
carefully to ensure that constraining facets are respected.
For these algorithms, a critical aspect of scheduling is that the

vertex weights must be perturbed. The purpose of the weight per-
turbations is to ensure that the retriangulation performed at any in-
stant in time is never more complicated than a bistellar flip. Sec-
tion 5 describes a symbolic perturbation method that ensures that
the flip algorithms are correct. Each update algorithm requires that
the input triangulation is a weighted CDT consistent with the per-
turbation method.
For more discussion of bistellar flips, see Lawson [15], Edels-

brunner and Shah [10], and de Loera, Santos, and Urrutia [6].

regular non-regular

Hang Si An Introduction to Delaunay-based Mesh Generation 21 / 55

COMPUTING TRIANGULATIONS USING ORIENTED MATROIDS 13

1235
1356
1456

46
24
23

1235
1345
3456

46
26
12

1234
2345
345612

16
56

2456
1246
123645

35
13

1234
2346
245613

15
56

b3b4

23
34
45 1236

1256
1456

SA

b1

b5

b6

b2

0

5

1

3

2

6

5

2

6

1

3
4

5

6

1 2
5

5

6

4

1
2 1

3

6

2

44

4

5

1

4

2

6

3

3

3

FIGURE 11. The hexagon as the secondary polytope of the prism P.
Left: One maximal cone of the secondary fan is highlighted. Pairs of dig-
its inside such a cone � index vertices bi in whose positive span � lies,
and the complementary 4-tuples label the simplex of the triangulation
of A that � corresponds to. Right: Triangulations corresponding to ver-
tices of ⌃(P). Edges of ⌃(P) representing flips between triangulations.

By interpreting the rows of B as six points b1, b2, . . . , b6 in R2, we arrive at the Gale
transform A⇤ of A. In general, if A consists of n points in d-space (and A does not
lie in any lower-dimensional subspace), then A⇤ is made up of n points in (n - d - 1)-
space. Now consider the set C(A) of all full-dimensional positive cones spanned by the
points in A⇤ with apex in 0, together with the set R of all their facets. The chamber
complex eC(A) of C(A) is the union of all full-dimensional polyhedral cones whose facets
are facets of cones in C(A), but whose relative interior is not crossed by any member of R.
In our two-dimensional example, the set R consists of the six rays

R =
⌦

R�0
hbii : 1  i  6

↵
,

so eC(A) is given by the following list of cones. See Figure 11 (left).

eC(A) =
⌦

R�0
hb1, b6i, R�0

hb6, b2i, R�0
hb2, b4i,

R�0
hb4, b3i, R�0

hb3, b5i, R�0
hb5, b1i

↵

We now consider each cone � 2 eC(A) in turn, and write down the generators of all
cones in C(A) that contain �. For instance, � = R�0

hb1, b6i lies in the cones R�0
hb5, b6i,

R�0
hb1, b6i, and R�0

hb1, b2i of C(A), and the complements {1, 2, 3, 4}, {2, 3, 4, 5}, and
{3, 4, 5, 6} of these index sets correspond precisely to a triangulation of P! Since there are
six maximal cones in eC(A), we expect each one of them to correspond to one of the six
regular triangulations of P.
In fact this is true, and even more: The set eC(A) is a complete polyhedral fan, which

means that the cones in eC(A) intersect precisely in common faces, and together span all
of Rn-d-1. This fan is called the secondary fan ofA. It has the additional property that it
is the normal fan of a certain polytope in Rn-d-1, which says that the vectors contained
in a fixed cone of eC(A) are just the normal vectors of hyperplanes supporting exactly one
face of this polytope. It now comes as no surprise that this polytope is the one defined to
be the secondary polytope ⌃(A) of A. Of course, this construction only determines ⌃(A)

6.1. Cyclic polytopes 285

Figure 6.7: The height of a section defines a

poset on all triangulations of C(6,1).

S̃

T2
T1

Figure 6.8: A flip can be interpreted as stacking a

triangle on top of the characteristic section and

taking the new upper envelope; this defines a

covering relation among triangulations of C(6,1).

Let us look at a flip in a triangulation T of C(n,1), resulting in a new
triangulation T ′. Flipping is equivalent to the insertion or the removal of
exactly one point. A natural direction on flips can be given as follows:
an upflip removes a subdivision point, a downflip inserts one. We get the
poset structure T ≤1 T ′ if and only if T can be changed into T ′ by
removing subdivision points. As this cannot produce any cycles, we get
a poset structure like in the two-dimensional case. It is easy to see that
the poset of triangulations of C(n,1) is equivalent to the reversed Boolean
lattice on n−2 elements.

How are the two poset structures related? If we insert a point in T , then
sT ′ lies below sT , and exactly one triangle fits in between. This triangle is
the convex hull of the points supporting the flip (see Figure 6.8).

This shows at the same time that T ≤1 T ′ implies T ≤2 T ′. We say,
“the poset ≤1” is coarser than “≤2” and “≤2” is finer than “≤1”.

There is another thing to observe in the one-dimensional case: Assume,
we start with the minimal triangulation of C(n,1) and flip upwards. On
the level of characteristic sections, this corresponds to stacking a triangle
t1 somewhere on top of the lower facets and taking the upper envelope.
We can interpret this as a continuous action of sliding up the characteristic
section, thereby wiping exactly over t1. If we perform another upflip, the
corresponding wiped triangle t2 will intersect properly with t1. Eventually,
we arrive at the maximal triangulation.

In the continuous process of sliding the lower facets all the way up to the
upper facets we have wiped over the whole two-dimensional cyclic poly-
tope C(n,2). This means that the triangles corresponding to the upflips
cover C(n,2). Since they are intersecting properly and cover, they form a
triangulation of C(n,2). In other words: the sets of flips in maximal chains
of the first poset structure correspond to triangulations.

Conversely, every triangulation of C(n,2) gives rise to a sequence of flips
in C(n,1) from 0̂ to 1̂ (exercise).

6.1.4 Higher Stasheff-Tamari posets

In this section, we will define two poset structures on the set of triangula-
tions of a cyclic point configuration. In our two-dimensional example, the
first poset structure yields exactly the structure in Figure 6.1. It is a poset
structure that is defined by means of its covering relations via a direction on
flips. The second poset structure is defined for every pair of triangulations
via the height of their characteristic sections, and yields the poset structure
that we have seen in the previous section in dimension one.

Let us start with the second poset structure because it will help us to
understand why the directed flips defined below do not produce directed
cycles.

C (n,d +1)

Figure 6.9: The brighter section is weakly higher

than the darker section; therefore, the

corresponding triangulations are ordered

accordingly in HST2(n,d).
Definition 6.1.16 (Second Stasheff-Tamari Poset). For triangulations T
and T ′ of C(n,d) define

T ≤2 T ′ : ⇐⇒ sT (x)d+1 ≤ sT ′(x)d+1 ∀x ∈ conv(C(n,d)). (6.7)

The poset induced by “≤2” is the Second Stasheff-Tamari Poset and is

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.24

Boundary Recovery

Motivation

Given a set of constraints, edges and polygons, how to generate a tetrahedralization
that respects them?

I The tetrahedralization should have a small number of elements.
I There is no requirement on the quality of tetrahedra.

In literatures, it is generally referred as the boundary conformity or boundary
recovery problem.

How to recover the edge AB? How to recover the rectangular face
images from [Owen 1998]

Hang Si si@wias-berlin.de () Introduction to Delaunay-based Tetrahedral Mesh Generation 2014-10-12 51 / 110

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.25

Planar straight-line graphs (PSLGs)

6 HANG SI

Felkel: Computational geometry

2. Triangulation of the monotone polygon

� Sweep left to right - in O(n) time
� Triangulate everything you can by adding

diagonals between visible points
� Remove triangulated region from further

consideration – mark as DONE

[Mount]To stack

(9 / 79)

u u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

from stack

from stack

(10 / 79)

u
u

u

u

Felkel: Computational geometry

Triangulation of the monotone polygon

[Mount]

from stack

to stack

from stack

from stack

(10 / 79)

u
u

u

u

Figure 7. A sweep line algorithm to triangulate an x-monotone polygon.
(Figure from Mount [?]).

2. Constrained triangulations

2.1. Planar straight-line graphs. Consider now the input is a finite set of points
S ⇢ R2, together with a finite set of line segments, L, each connecting two points in
S. We require any two line segments of L be disjointed or met at most in a common
endpoint. We call G = (S, L) a planar straight-line graph (PSLG), see Figure 2.1 Left
for an example.

In general, the Delaunay triangulation of S may not contain all line segments in L as
its edges, see Figure 2.1 Middle. We define a constrained triangulation (or shortly CT)
of a PSLG (S, L) be a triangulation of S which contains all line segments of L as its
edges, see Figure 2.1 Right.

Since the flip-graph of a 2d point set is connected, a constrained triangulation of
(S, L) exists. This property only holds for two-dimensional constrained triangulation
algorithms.

2.2. Incremental construction. Although there are many e�cient algorithms to con-
struct constrained triangulations, the incremental algorithm is commonly used in prac-
tice due to its simplicity and e�ciency.

The algorithm begins by constructing an arbitrary triangulation of the point set S,
then inserts the segments of L into the triangulation one by one. The basic scheme of
the algorithm is given below.

Consider the search of an edge eAB in a triangulation T . Assuming both of the
endpoints A and B are already vertices of T . We can first locate one of the endpoints,
say A (e.g., use the simple straight-line walk approach). We then search the other

TRIANGULAR MESH GENERATION IN THE PLANE 7

A PSLG (S, L) The DT of S A CT of (S, L)

Figure 8. A set of vertices and line segments (Left), the Delaunay tri-
angulation of the vertices (Middle), and a constrained triangulation of
the vertices which includes all segments (Right).

Algorithm: IncrementalCT(S, L)
Input: A PSLG (S, L), k := |L|, and

segments in L are ordered from s1, · · · , sk;
Output: A constrained triangulation T of (S, L);
1 construct a triangulation T0 of S;
2 for i = 1 to k do
3 if si 62 Ti�1 then
4 RecoverEdge(si, Ti�1);
5 endif
6 endfor

Figure 9. The incremental constrained triangulation algorithm. Ti is a
CT containing the first i segments in L.

endpoint B from the located triangle whose origin is A. This operation is a simple
rotary traversal of the adjacent triangles of A. If eAB already appears in T , then it is
inserted. Otherwise, it is a missing edge in T .

B A

VS

Local Swapping Example
•Recover edge CD at vector Vs

B A

VS
Figure 10. Left: search an edge eAB in a constrained triangulation.
Right: the cavity of the missing edge eAB. (Figures from S. Owen).

The Delaunay Refinement Algorithm

• Maintain set of points, set of segments.
• Make segments Delaunay by splitting encroached
segments.

• Ensure Quality by adding circumcenter of bad
triangles. But if this encroaches a segment, split
the segment instead.

• Return Delaunay Triangulation of the points.
• Caveat Implementor!

Sangria seminar, 03.10.03 – p.4/18

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.26

Constrained Delaunay Triangulations

A triangle is constrain Delaunay if (i) it does not intersect with an input segment,
and (ii) its circumcircle encloses no vertex which is visible from its interior.

A constrained Delaunay triangulation (CDT) is a triangulation whose triangles are
all constrained Delaunay [Lee & Lin 1986].

A CDT has many nice properties as close as to those of a Delaunay triangulation.

Chew’s algorithm constructs a CDT in O(n log n) time [Chew 1989].

a non-constrained a constrained Delaunay a constrained Delaunay
triangle triangle triangulation

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 57 / 154

Constrained Delaunay Triangulations

A triangle is constrain Delaunay if (i) it does not intersect with an input segment,
and (ii) its circumcircle encloses no vertex which is visible from its interior.

A constrained Delaunay triangulation (CDT) is a triangulation whose triangles are
all constrained Delaunay [Lee & Lin 1986].

A CDT has many nice properties as close as to those of a Delaunay triangulation.

Chew’s algorithm constructs a CDT in O(n log n) time [Chew 1989].

a non-constrained a constrained Delaunay a constrained Delaunay
triangle triangle triangulation

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 57 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.27

The lifting transformation of CDTs

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.28

4 HANG SI

1 while P contains more than 3 vertices do
2 Find an ear {ai�1, ai, ai+1} of P;
3 Output a triangle {ai�1, ai, ai+1};
4 Update P := P \ conv{ai�1, ai, ai+1}};
5 endwhile

Figure 3. The Ear-Clipping algorithm to triangulate a simple polygon.

What is the running time of this algorithm? Consider how to find an ear of P . First
of all, one needs to check where three adjacent vertices ai�1, ai, ai+1 such that ai is a
locally convex vertex. This check takes O(n) time. Then one needs to check whether
the edge {ai�1, ai+1} is a diagonal, this takes also O(n) time. Hence the worst case of
finding one ear takes O(n2) time. It is indeed possible since there exists a simple polygon
that only contains two ears. An example of a simple polygon with few ears is shown
in Figure 4. The worst-case complexity of the Ear-Clipping algorithm is O(n3). This
algorithm is far from optimal. The advantage of this algorithm is its simplicity. For a
small n, it is still an attractive algorithm to be used.

922 C. Hernando et al. / Theoretical Computer Science 289 (2002) 919–937

Fig. 2. A non-2-!ippable, non-VE-!ippable polygon.

edges of a 3-!ip: a 6-cycle, either self-intersecting or non-self-intersecting; and two
3-cycles sharing one vertex in common, again either self-intersecting or non-self-
intersecting. The latter con"gurations occur when two leaving edges share a common
endpoint. Since the leaving edges are the two edges incident to this endpoint and
one additional edge of the polygon, we call such !ips vertex–edge !ips (VE-!ips).

• A !ip is called planar if no leaving edge intersects any entering edge, except perhaps
at their endpoints.
Planar !ips are of computational interest, in that the entering edges are edges of the

visibility graph of P. Visibility graphs of simple polygons can be computed in !(M)
time, where M is the number of edges of the graph [11]. Using the visibility graph,
all candidate L-!ips and planar VE-!ips of a given polygon can be generated in a
straightforward manner, in O(M) time.
In 1991, David Avis posed the following question: can any simple polygon on S be

transformed to any other simple polygon on S by means of a "nite sequence of 2-!ips?
Unfortunately, the answer to Avis’ question turns out to be ‘no’ [12]. The 19-vertex
polygon shown in Fig. 2 cannot be 2-!ipped or VE-!ipped to any other polygon on
S (although it is 3-!ippable). Arbitrarily large non-2-!ippable and non-VE-!ippable
polygons may be exhibited.
The natural question to ask at this point is, is there a constant k such that any

polygon P on a given set of vertices S can be transformed into any other polygon
P� via a "nite sequence of k-!ips? For general polygons, the question is still very
much open. In this paper, we show that two of the simplest operations, namely L-!ips
and planar VE-!ips, together are su#cient to connect polygon classes with certain
visibility properties: clearly (weakly) edge-visible and clearly (weakly) externally vis-
ible. These polygon classes are formally de"ned in the next section, although more
information concerning visibility within polygons can be found in [19]. In Section
3, we prove the connectivity of edge-visible polygons under the VE-L-!ip operation,
in which either an L-!ip or a planar VE-!ip can be performed. The edge-visibility
is taken with respect to a "xed edge. In Section 3, we prove the connectivity of
other polygon classes: edge-visible, externally visible, monotone, x-monotone, and star-
shaped—these classes are described in Section 2. Open problems are discussed in
Section 5.

Figure 4. A simple polygon with few ears. (Figure from [6]).

Every diagonal of a simple polygon P divides P into two simple polygons with fewer
vertices. This fact gives a recursive algorithm to triangulate P by cutting diagonals.
Assume n > 3. Consider the leftmost vertex v and its two neighbors u and w. Either
uw is a diagonal (see Figure 5 Left), or part of the boundary of P is in the triangle uvw

(see Figure 5 Right). Choose the vertex t in uvw farthest from the line through u and
w, then vt must be a diagonal. This shows that find a diagonal takes O(n) time. Hence
the worst runtime of this algorithm is O(n2).

1.1.2. Triangulating a monotone polygon. Except for convex polygons, there are partic-
ular types of simple polygons known to be triangulated e�ciently.

A polygonal chain C is strictly monotone with respect to line L if any line orthogonal
to L intersects C in at most one point. A chain C is (weakly) monotone with respect
to line L, if any line orthogonal to L intersects C in at most one connected component
(point, line segment,...), see Figure 6.

TRIANGULAR MESH GENERATION IN THE PLANE 3

Figure 1. The number of triangulations of a convex n-gon is the n � 2
Catalan number C(n � 2).

simple_polygon_triang_01.pngsimple_polygon_01.png

pi

pj

a diagonal

p1

p2

p3

p4

pn

an ear

Figure 2. Left: A simple polygon with n vertices. The edge {pi, pj} is a
diagonal. The three vertices p1, p2, p3 form an ear. Right: A triangulation
of this polygon.

Theorem 1.1 (Two-Ear theorem [8]). Every simple polygon with more than 3 vertices
has at least two ears.

The Two-Ear theorem not only proves the existence of triangulation but also gives
a simple iterative scheme to find a triangulation of P . It is known as the Ear-Clipping
algorithm: Given a simple polygon P , as long as P is not a triangle, find an ear of P and
remove a triangle from P?the number of vertices of P is reduced by 1. The algorithm
stops when there is only a triangle left.

From this algorithm, it is easy to see that every triangulation of a simple polygon
with n vertices has exactly n � 2 triangles and n � 3 diagonals. These counts can also
be derived from the Euler’s formula (we leave it as an exercise).

TRIANGULAR MESH GENERATION IN THE PLANE 3

Figure 1. The number of triangulations of a convex n-gon is the n � 2
Catalan number C(n � 2).

simple_polygon_triang_01.pngsimple_polygon_01.png

pi

pj

a diagonal

p1

p2

p3

p4

pn

an ear

Figure 2. Left: A simple polygon with n vertices. The edge {pi, pj} is a
diagonal. The three vertices p1, p2, p3 form an ear. Right: A triangulation
of this polygon.

Theorem 1.1 (Two-Ear theorem [8]). Every simple polygon with more than 3 vertices
has at least two ears.

The Two-Ear theorem not only proves the existence of triangulation but also gives
a simple iterative scheme to find a triangulation of P . It is known as the Ear-Clipping
algorithm: Given a simple polygon P , as long as P is not a triangle, find an ear of P and
remove a triangle from P?the number of vertices of P is reduced by 1. The algorithm
stops when there is only a triangle left.

From this algorithm, it is easy to see that every triangulation of a simple polygon
with n vertices has exactly n � 2 triangles and n � 3 diagonals. These counts can also
be derived from the Euler’s formula (we leave it as an exercise).

4 HANG SI

1 while P contains more than 3 vertices do
2 Find an ear {ai�1, ai, ai+1} of P;
3 Output a triangle {ai�1, ai, ai+1};
4 Update P := P \ conv{ai�1, ai, ai+1}};
5 endwhile

Figure 3. The Ear-Clipping algorithm to triangulate a simple polygon.

What is the running time of this algorithm? Consider how to find an ear of P . First
of all, one needs to check where three adjacent vertices ai�1, ai, ai+1 such that ai is a
locally convex vertex. This check takes O(n) time. Then one needs to check whether
the edge {ai�1, ai+1} is a diagonal, this takes also O(n) time. Hence the worst case of
finding one ear takes O(n2) time. It is indeed possible since there exists a simple polygon
that only contains two ears. An example of a simple polygon with few ears is shown
in Figure 4. The worst-case complexity of the Ear-Clipping algorithm is O(n3). This
algorithm is far from optimal. The advantage of this algorithm is its simplicity. For a
small n, it is still an attractive algorithm to be used.

922 C. Hernando et al. / Theoretical Computer Science 289 (2002) 919–937

Fig. 2. A non-2-!ippable, non-VE-!ippable polygon.

edges of a 3-!ip: a 6-cycle, either self-intersecting or non-self-intersecting; and two
3-cycles sharing one vertex in common, again either self-intersecting or non-self-
intersecting. The latter con"gurations occur when two leaving edges share a common
endpoint. Since the leaving edges are the two edges incident to this endpoint and
one additional edge of the polygon, we call such !ips vertex–edge !ips (VE-!ips).

• A !ip is called planar if no leaving edge intersects any entering edge, except perhaps
at their endpoints.
Planar !ips are of computational interest, in that the entering edges are edges of the

visibility graph of P. Visibility graphs of simple polygons can be computed in !(M)
time, where M is the number of edges of the graph [11]. Using the visibility graph,
all candidate L-!ips and planar VE-!ips of a given polygon can be generated in a
straightforward manner, in O(M) time.
In 1991, David Avis posed the following question: can any simple polygon on S be

transformed to any other simple polygon on S by means of a "nite sequence of 2-!ips?
Unfortunately, the answer to Avis’ question turns out to be ‘no’ [12]. The 19-vertex
polygon shown in Fig. 2 cannot be 2-!ipped or VE-!ipped to any other polygon on
S (although it is 3-!ippable). Arbitrarily large non-2-!ippable and non-VE-!ippable
polygons may be exhibited.
The natural question to ask at this point is, is there a constant k such that any

polygon P on a given set of vertices S can be transformed into any other polygon
P� via a "nite sequence of k-!ips? For general polygons, the question is still very
much open. In this paper, we show that two of the simplest operations, namely L-!ips
and planar VE-!ips, together are su#cient to connect polygon classes with certain
visibility properties: clearly (weakly) edge-visible and clearly (weakly) externally vis-
ible. These polygon classes are formally de"ned in the next section, although more
information concerning visibility within polygons can be found in [19]. In Section
3, we prove the connectivity of edge-visible polygons under the VE-L-!ip operation,
in which either an L-!ip or a planar VE-!ip can be performed. The edge-visibility
is taken with respect to a "xed edge. In Section 3, we prove the connectivity of
other polygon classes: edge-visible, externally visible, monotone, x-monotone, and star-
shaped—these classes are described in Section 2. Open problems are discussed in
Section 5.

Figure 4. A simple polygon with few ears. (Figure from [6]).

Every diagonal of a simple polygon P divides P into two simple polygons with fewer
vertices. This fact gives a recursive algorithm to triangulate P by cutting diagonals.
Assume n > 3. Consider the leftmost vertex v and its two neighbors u and w. Either
uw is a diagonal (see Figure 5 Left), or part of the boundary of P is in the triangle uvw

(see Figure 5 Right). Choose the vertex t in uvw farthest from the line through u and
w, then vt must be a diagonal. This shows that find a diagonal takes O(n) time. Hence
the worst runtime of this algorithm is O(n2).

1.1.2. Triangulating a monotone polygon. Except for convex polygons, there are partic-
ular types of simple polygons known to be triangulated e�ciently.

A polygonal chain C is strictly monotone with respect to line L if any line orthogonal
to L intersects C in at most one point. A chain C is (weakly) monotone with respect
to line L, if any line orthogonal to L intersects C in at most one connected component
(point, line segment,...), see Figure 6.

4 HANG SI

1 while P contains more than 3 vertices do
2 Find an ear {ai�1, ai, ai+1} of P;
3 Output a triangle {ai�1, ai, ai+1};
4 Update P := P \ conv{ai�1, ai, ai+1}};
5 endwhile

Figure 3. The Ear-Clipping algorithm to triangulate a simple polygon.

What is the running time of this algorithm? Consider how to find an ear of P . First
of all, one needs to check where three adjacent vertices ai�1, ai, ai+1 such that ai is a
locally convex vertex. This check takes O(n) time. Then one needs to check whether
the edge {ai�1, ai+1} is a diagonal, this takes also O(n) time.

Hence the worst case of finding one ear takes O(n2) time.
It is indeed possible since there exists a simple polygon that only contains two ears.

An example of a simple polygon with few ears is shown in Figure 4. The worst-case
complexity of the Ear-Clipping algorithm is O(n3). This algorithm is far from optimal.
The advantage of this algorithm is its simplicity. For a small n, it is still an attractive
algorithm to be used.

922 C. Hernando et al. / Theoretical Computer Science 289 (2002) 919–937

Fig. 2. A non-2-!ippable, non-VE-!ippable polygon.

edges of a 3-!ip: a 6-cycle, either self-intersecting or non-self-intersecting; and two
3-cycles sharing one vertex in common, again either self-intersecting or non-self-
intersecting. The latter con"gurations occur when two leaving edges share a common
endpoint. Since the leaving edges are the two edges incident to this endpoint and
one additional edge of the polygon, we call such !ips vertex–edge !ips (VE-!ips).

• A !ip is called planar if no leaving edge intersects any entering edge, except perhaps
at their endpoints.
Planar !ips are of computational interest, in that the entering edges are edges of the

visibility graph of P. Visibility graphs of simple polygons can be computed in !(M)
time, where M is the number of edges of the graph [11]. Using the visibility graph,
all candidate L-!ips and planar VE-!ips of a given polygon can be generated in a
straightforward manner, in O(M) time.
In 1991, David Avis posed the following question: can any simple polygon on S be

transformed to any other simple polygon on S by means of a "nite sequence of 2-!ips?
Unfortunately, the answer to Avis’ question turns out to be ‘no’ [12]. The 19-vertex
polygon shown in Fig. 2 cannot be 2-!ipped or VE-!ipped to any other polygon on
S (although it is 3-!ippable). Arbitrarily large non-2-!ippable and non-VE-!ippable
polygons may be exhibited.
The natural question to ask at this point is, is there a constant k such that any

polygon P on a given set of vertices S can be transformed into any other polygon
P� via a "nite sequence of k-!ips? For general polygons, the question is still very
much open. In this paper, we show that two of the simplest operations, namely L-!ips
and planar VE-!ips, together are su#cient to connect polygon classes with certain
visibility properties: clearly (weakly) edge-visible and clearly (weakly) externally vis-
ible. These polygon classes are formally de"ned in the next section, although more
information concerning visibility within polygons can be found in [19]. In Section
3, we prove the connectivity of edge-visible polygons under the VE-L-!ip operation,
in which either an L-!ip or a planar VE-!ip can be performed. The edge-visibility
is taken with respect to a "xed edge. In Section 3, we prove the connectivity of
other polygon classes: edge-visible, externally visible, monotone, x-monotone, and star-
shaped—these classes are described in Section 2. Open problems are discussed in
Section 5.

Figure 4. A simple polygon with few ears. (Figure from [6]).

Every diagonal of a simple polygon P divides P into two simple polygons with fewer
vertices. This fact gives a recursive algorithm to triangulate P by cutting diagonals.
Assume n > 3. Consider the leftmost vertex v and its two neighbors u and w. Either
uw is a diagonal (see Figure 5 Left), or part of the boundary of P is in the triangle uvw

(see Figure 5 Right). Choose the vertex t in uvw farthest from the line through u and
w, then vt must be a diagonal. This shows that find a diagonal takes O(n) time. Hence
the worst runtime of this algorithm is O(n2).

1.1.2. Triangulating a monotone polygon. Except for convex polygons, there are partic-
ular types of simple polygons known to be triangulated e�ciently.

A polygonal chain C is strictly monotone with respect to line L if any line orthogonal
to L intersects C in at most one point. A chain C is (weakly) monotone with respect

TRIANGULAR MESH GENERATION IN THE PLANE 3

Figure 1. The number of triangulations of a convex n-gon is the n � 2
Catalan number C(n � 2).

simple_polygon_triang_01.pngsimple_polygon_01.png

pi

pj

a diagonal

p1

p2

p3

p4

pn

an ear

Figure 2. Left: A simple polygon with n vertices. The edge {pi, pj} is a
diagonal. The three vertices p1, p2, p3 form an ear. Right: A triangulation
of this polygon.

Theorem 1.1 (Two-Ear theorem [8]). Every simple polygon with more than 3 vertices
has at least two ears.

The Two-Ear theorem not only proves the existence of triangulation but also gives
a simple iterative scheme to find a triangulation of P . It is known as the Ear-Clipping
algorithm: Given a simple polygon P , as long as P is not a triangle, find an ear of P and
remove a triangle from P?the number of vertices of P is reduced by 1. The algorithm
stops when there is only a triangle left.

From this algorithm, it is easy to see that every triangulation of a simple polygon
with n vertices has exactly n � 2 triangles and n � 3 diagonals. These counts can also
be derived from the Euler’s formula (we leave it as an exercise).

Theorem Except for triangles, every simple polygon has at least two
non-overlapping ears.

Meisters' Proof

The proof is by Induction on the number of vertices, n, in the simple polygon, P.

Base case

When n = 4. The simple polygon is a quadrilateral and has two ears, E1 and E2, as
shown below.

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.29

TRIANGULAR MESH GENERATION IN THE PLANE 13

3.2. Incremental CDT construction. Constrained Delaunay triangulations can also
be constructed by the incremental algorithm, i.e., start with an initial Delaunay trian-
gulation of the point set, insert the line segments one by one. The di↵erence to the
previous algorithm is that after each line segment’s insertion, one needs to reconstruct
a constrained Delaunay triangulation that includes it.

In this section, we will show how to incrementally construct a CDT by using the in-
cremental algorithm introduced in Section ??. We will first use the simple edge recovery
by flips algorithm to recover a missing edge. Then we immediately use Lawson’s flip
algorithm to recover the CDT.

Algorithm: IncrementalCDT(S, L)
Input: A PSLG (S, L), k := |L|;
Output: the CDT T of (S, L);
1 construct an initial CDT T0 of S;
2 for i = 1 to k do
3 if si 2 L and si 62 Ti�1 then
4 RecoverEdge(si, Ti�1);
5 Let E be the set of new edges in Ti�1;
6 ConstrainedLawsonFlip(E);
7 endif
8 endfor

Figure 17. The incremental constrained Delaunay triangulation algorithm.

3.3. Recover edge by weighted Delaunay flips. This section introduces a simple
and e�cient approach to insert a segment into the constrained Delaunay triangulation
by performing a sequence of edge flips. Shewchuk [12] first develops it.

Figure 18. Left: The lifting map of a point set and its Delaunay trian-
gulation. Right: The constrained Delaunay triangulation with the lifting
map inverted to more clearly show its non-convexity. (Figures from [12]).

3.3.1. Order flips via the lifting map. In the previous flip-based edge recovery algorithm,
when we want to flip a crossing edge, it may be either unflippable or a previously flipped

TRIANGULAR MESH GENERATION IN THE PLANE 11

B A

Local Swapping Example
•Make a list (queue) of all edges Ei, that intersect Vs

B A

(1) (2)

B A B A

an inverted triangle

(3) (4)

B A B A

(5) (6)

Figure 15. Recover an edge by flips. (Figures from S. Owen).

Lin [?] and Chew [2]. After introducing the basic definitions and properties of them, we
show how to adapt the incremental construction algorithm to construct them.

3.1. Definitions and properties. We use a notion of visibility between points to in-
troduce a particular type of constrained triangulation. Points x,y 2 R2 are visible from
each other if the line segment xy contains no point of S in its interior, and it shares no
interior point with a line segment of L, i.e., int(xy) \ S = ; and xy \ uv = ;, for all
uv 2 L.

A triangle ⌧ in a constrained triangulation of (S, L) is constrained Delaunay if it has
a circumcircle that contains no point in S that is visible from the interior of ⌧ .

A constrained Delaunay triangle is a Delaunay triangle if it does not contain any
edge of L. Otherwise, it may not be globally Delaunay, since its circumcircle can be
non-empty. However, it remains Delaunay if we only consider those points in S that are
visible from its interior.

Assume S is in general position, a constrained triangulation T of (S, L) is the con-
strained Delaunay triangulation (or CDT) of (S, L) if all triangles of T are constrained
Delaunay.

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.30

Piecewise linear complexesPiecewise Linear Complexes

⌅ A 3D piecewise linear complex (PLC) [Miller et al’96] is a collection X of
vertices, edges, polygons, and polyhedra, collectively called cells, such that

(1) the boundary of each cell in X is also cells in X ; and
(2) if f ,g 2X and f \g 6= /0, then f \g is a union of cells in X .

Updating and Constructing Constrained Delaunay and
Constrained Regular Triangulations by Flips

Jonathan Richard Shewchuk
Department of Electrical Engineering and Computer Sciences

University of California at Berkeley
Berkeley, California 94720
jrs@cs.berkeley.edu

Abstract
I discuss algorithms based on bistellar flips for inserting and delet-
ing constraining (d � 1)-facets in d-dimensional constrained De-
launay triangulations (CDTs) and weighted CDTs, also known as
constrained regular triangulations. The facet insertion algorithm is
likely to outperform other known algorithms on most inputs. The
facet deletion algorithm is the first proposed for d > 2, short of
recomputing the CDT from scratch. An incremental facet insertion
algorithm that begins with an unconstrained Delaunay triangula-
tion can construct the CDT of a ridge-protected piecewise linear
complex with nv vertices in O(n�d/2�+1

v log nv) time. Hence, in
odd dimensions, CDT construction by incremental facet insertion
is within a factor of log nv of worst-case optimal. Perhaps the most
important feature of these algorithms is that they are relatively easy
to implement.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
Constrained Delaunay triangulation, bistellar flip

1. Introduction
A constrained Delaunay triangulation (CDT) is a variation of a

Delaunay triangulation that is constrained to respect the shape of a
domain—perhaps an object to be rendered, or a domain to be simu-
lated by a numerical method like the finite element method. CDTs
have desirable properties that make them useful in interpolation and
numerical analysis, including their tendency to favor “round” tetra-
hedra over “skinny” (high aspect ratio) tetrahedra, their suitability
for interpolation [25], and their mathematical properties that allow

Supported in part by the National Science Foundation under
Awards ACI-9875170, CMS-9980063, CCR-0204377, and EIA-
9802069, and by a gift from the Okawa Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profi t or commercial advantage and that copies
bear this notice and the full citation on the fi rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifi c
permission and/or a fee.
SoCG’03, June 8–10, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-663-3/03/0006 ...$5.00.

Delaunay refinement algorithms [4, 22] to generate meshes that
have provably good characteristics.
A regular triangulation is a triangulation that can arise as a side

view of a convex polytope. Delaunay triangulations are a special
case of regular triangulations. A constrained regular triangulation
is a triangulation that arises as a side view of a polytope that is
locally convex everywhere except at the faces that are constrained
to be part of the triangulation. (This notion is formalized shortly.)
Cheng et al. [2] have shown that regular triangulations are useful

in three-dimensional mesh generation. Constrained regular trian-
gulations are even more useful because of their ability to respect
the shape of a domain. Another use for constrained regular trian-
gulations, as this paper shows, is that they help in reasoning about
algorithms for updating CDTs based on elementary geometric op-
erations known as bistellar flips.
This paper discusses flip-based algorithms for updating and con-

structing CDTs and constrained regular triangulations. The algo-
rithms are relatively simple (as compared to sweep algorithms [23]),
yet are fast in odd dimensions, and are probably the best exist-
ing choice for practical three-dimensional CDT construction. Flip-
based CDT construction takesO(n�d/2�+1

v log nv) time, where nv

is the number of vertices in the input and d is the dimension. This is
within a factor of log nv of worst-case optimal in odd dimensions.
A CDT is a triangulation of an underlying input called a piece-

wise linear complex (PLC), following Miller, Talmor, Teng, Walk-
ington, and Wang [17]. A PLC X is a set of facets of dimensions
0 through d. The 0-facets are vertices, and every vertex of a CDT
ofX is a vertex inX . Each higher-dimensional facet is a polytope
(roughly speaking), possibly with holes, slits, and isolated vertices
in it, as Figure 1 shows. Formally, a k-facet is a union of open con-
vex k-polytopes lying in a common k-flat, although sometimes it is
more convenient to think of the closure of the k-facet. A facet may
be nonconvex and may have any number of faces. A facet need not
be connected.

Figure 1: Each facet of a PLC (left) may have holes, slits, and inte-
rior vertices, which may be used to enforce the presence of specific
faces (perhaps so that boundary conditions may be applied) or to
support intersections with other facets. The right illustration is the
constrained Delaunay tetrahedralization of the PLC.

21th IMR, San Jose, CA · October 5, 2012 · Page 4 (27)

— figure by J. Shewchuk

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.31

 Some polyhedra need Steiner points (additional points)3D Indecomposable Polyhedra

A simple polyhedron P may not have a tetrahedralization without using additional
points (Steiner points(1)) [Lennes 1911, Schönhardt 1928].

The problem of deciding whether P can be tetrahedralized without Steiner points is
NP-complete [Rupper & Seidel 1992].

310 g. Soheahardt.

Wit gehen aus yon einem goraden Prisma mit gloiohseigig dreieokiger

Ortmdil&che. In den drei quadra~ischon Seltenfl~chen werden in der Weiss

drei Diagonalen d~ d~ d 8 gezogen, dal~ sis boi Drehung des Prismas am

seine Itauptachse um 120 ~ bzw. 240 ~ ineinander fibergehen.

Ntm wird das obere Dreieek gegea das untere

um die Aehse so gedreht, dall die Diagonalen sick

zua~chst vcrl~ingern. Die beiden Dreieeke hal; man

sick dabei Ms sl;arr vorzastellen. ~ den Dreh-

winkel ~* gelte:

0 <. va <: 60 o .

Der so entstandeno KSrpex*) besil;zl; drei Hohl-

kanten, n~imlieh die Diagonalen der arsprii~gliehen

i Quadrate, das heil~t, l~ngs dieser ist er konkav.
Seine Kanl;en haben den Zusammenhang des

Oktaeclers, in d a s e r nebenbei bemerkt iibergefiihrl;

Fig. 1. werden kaan, indem man obige Drehung rfiekggngig

macht und um 60 ~ weil;erdreht. Infolgedessen kann ohne Einfiihrung

nener Kanten unmeglieh ein Tetraeder yon ibm abgespalten werden. Die

einzigen neck nicht gezogenen Yerbindungslinien tier seeks Eckpunk~

sind abet diejemgen, welehe den neck nicht verwendeten Diagonalen der

Quadrate in der Ausgangsfigur en~spreehen. Da sic vollsl;iindig aullerhalb

des KSrpers hegen, kann dieser nieht in obigem 8inne in Tetraeder zer-

legl; werden.
Fiir v ~ 6 0 ~ entsl;ehl; sin KSrper, dessen Inheres in zwei getrenzte

Tetraede~ zerf~llt, and dessen Obertt~iche zum Teil doppelt iiberdeckl; ist~

Setzl; man die Kantent~inge des Prismas gleieh Eins, so liefer~ sine

einfache Reehnung fiir die L~nge d d e r Diagonalen d, (v ~ 1, 2, 3) dis

Beziehung:

d ~ = 1 + ~ s i n (6 0 ~ + ~).

Wie ma~l hieraus ersieh~, nimmt diese L~inge bei wacJasendem ~ zu

fiir v a < 30 ~ ab fiir '~' > 30 ~ und erreicht bei v~= 300 ihr Maximur~

Hier verschwindel; also die Ableitung tier Kantenl~mge naeh ~, oder worm

man sick die Drehung etwa gteichfSrmig ausgefiih~ denk% die Ableitu~g

nach der Zeit. Das betrefftende Polyeder ist somil; im Blaschkeschcn

Sinne ,,waeklig". Herr Blasehke hat; die wacldigen Achtttaehe in folgender

Weiso charakterisiert: Fa$t~ man die aeht Begrermungsclreiecke des Aeht~

flachs so in z~ei Gruppen zusammen, dab keine zwei, versehiedea~en

q Die Fig. t zeigt ihn fiix den Fall .~.= ;~0 o in schiefer Parallelprojaktion.

234 J. Ruppert and R. Seidel

ainants

Fig. 11. Clause niches attached to polyhedron P.

implication. Lastly, we show that P can indeed be constructed to satisfy the
constraints.

Outline of Construction. For the time being imagine the general shape of the
polyhedron P we construct as that of a rectangular box, with tiny niches arranged
on two sides of the box. There will be clause niches that correspond to clauses,
and variable niches corresponding to variables. We also use two special kinds of
vertices: truth-setting vertices and literal vertices.

The clause niches will be attached to the bot tom of the box, and will be
constructed (using the Il luminant Lemma) such that their illuminants form skinny
vertical regions that do not intersect within the polyhedron, as shown in Fig. 11.
There will be one literal vertex for each occurrence of each literal, with each literal
vertex being placed on the top of the box in the illuminant of the corresponding
clause. Each variable's literals will be arranged in two rows, one for the positive
literals and one for the negative literals. Figure 12 shows a Satisfiability expression
and the resulting clause niches and literal vertex placements.

The idea is that a clause niche may be triangulated only from its corresponding
literal vertices, as they are the only vertices in its illuminant. The literal vertex
that triangulated the niche corresponds to a literal that satisfies the clause in the
expression E. We need a way to enforce a " t ruth assignment," to prevent a

literal vertices. ~ x~ ~ x2 ~ xt
placed here i ~~. "

~ - " ' ' ~ ' ~ - clause niche
Fil~ 12. Regions of polyhedron corresponding to variables, niche for clause (X-'~I + g2 + X~), and
placemmat of three corresponding literal vertices.

The Schönhardt polyhedron A prove of NP-completeness
(a twisted prism) The constructed polyhedron

Image from [Schönhardt 1928] Image from [Rupper & Seidel 1992]

(1) Jakob Steiner (1796 � 1863), a Switzerland native and a geometer from Berlin.

Hang Si si@wias-berlin.de An Introduction to Delaunay-based Mesh Generation and Adaptation 2017-08-02 24 / 66

3D Indecomposable Polyhedra

There are 3d simple polyhedra which cannot be tetrahedralized without extra
vertices [Lennes 1911, Schönhardt 1928].

Delaunay triangulations exist in all dimensions.

Why haven’t CDTs been generalized beyond E²?

One reason: not every polyhedron can be
tetrahedralized without extra vertices.

Schönhardt’s
polyhedron

The Schönhardt Polyhedron [1928]

· Nov. 01, 2016 · Page 14 (67)

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.32

Constrained Delaunay Tetrahedralizations

We generalize the definition of 2d CDT of [Lee & Lin 1986] into 3D.

A tetrahedron is constrained Delaunay if: (i) it does not intersect any constraint in
its interior; and (ii) its circumsphere contains no vertex that is visible from its
interior.

A tetrahedralization T of a PLC X is a constrained Delaunay tetrahedralization
(CDT) if every tetrajedron in T is constrained Delaunay [Shewchuk 1998].

x

a constrained Delaunay a constrained Delaunay
tetrahedron tetrahedralization (CDT)

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 67 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.33

The Existence of CDTs

An edge e in a PLC X is strongly Delaunay if there exists a circumball of e such
that no other vertex of X lies inside or on the boundary of the ball.

Theorem [Shewchuk 1998]. If every edge of the PLC is strongly Delaunay, then it
has a CDT.

A Steiner CDT of X is a CDT of X [S, where S is a set of Steiner points.

Courtesy of J. Shewchuk

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 69 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.34

A CDT algorithm CDT Algorithms

Given a 3D PLC X , a Steiner CDT of X is generated
in three steps:

(1) Initialization: Creating a Delaunay
tetrahedralization of the vertices of X ;

(2) Segment insertion: Splitting all non-Delaunay
segments of X by inserting Steiner points, until
all subsegments are Delaunay;

(3) Polygon insertion: Generating the Steiner CDT
of X .

An input PLC X

(1) Initialization (2) Segment insertion (3) Polygon insertion

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 70 / 154

CDT Algorithms

Given a 3D PLC X , a Steiner CDT of X is generated
in three steps:

(1) Initialization: Creating a Delaunay
tetrahedralization of the vertices of X ;

(2) Segment insertion: Splitting all non-Delaunay
segments of X by inserting Steiner points, until
all subsegments are Delaunay;

(3) Polygon insertion: Generating the Steiner CDT
of X .

An input PLC X

(1) Initialization (2) Segment insertion (3) Polygon insertion

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 70 / 154

CDT Algorithms

Given a 3D PLC X , a Steiner CDT of X is generated
in three steps:

(1) Initialization: Creating a Delaunay
tetrahedralization of the vertices of X ;

(2) Segment insertion: Splitting all non-Delaunay
segments of X by inserting Steiner points, until
all subsegments are Delaunay;

(3) Polygon insertion: Generating the Steiner CDT
of X .

An input PLC X

(1) Initialization (2) Segment insertion (3) Polygon insertion

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 70 / 154

Segment Insertion

Splitting one segment may cause other segments non-Delaunay.
The algorithmic challenges are:
(i) to avoid inserting too many Steiner points; and
(ii) to avoiding creating unnecessarily short edges (with respect to the local feature size).

Missing segments can be recovered by adding

...but they can also be knocked out!

vertices...

Conforming Delaunay TriangulationsMissing segments can be recovered by adding

...but they can also be knocked out!

vertices...

Conforming Delaunay Triangulations

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 71 / 154

Segment Insertion Algorithms

Algorithms with guarantees on termination and no unnecessarily short edges are
proposed in [Shewchuk 2002, Si & Gärtner 2005].

An upper bound on the number of Steiner points is not yet available.

Shewchuk’s algorithm Si & Gärtner’s algorithm

Solid lines are constrained segments, Steiner points are shown in red.

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 72 / 154

CDT Algorithms

Given a 3D PLC X , a Steiner CDT of X is generated
in three steps:

(1) Initialization: Creating a Delaunay
tetrahedralization of the vertices of X ;

(2) Segment insertion: Splitting all non-Delaunay
segments of X by inserting Steiner points, until
all subsegments are Delaunay;

(3) Polygon insertion: Generating the Steiner CDT
of X .

An input PLC X

(1) Initialization (2) Segment insertion (3) Polygon insertion

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 70 / 154

Polygon Insertion by Flips [Shewchuk 2003]

The flip-based algorithm:
I Modeling the flip time as a variable in the weights of vertices.
I Calculating and maintaining the potential flips using a priority queue.
I Perform flips until the queue is empty.

The algorithm runs in O(n2 log n) time.

A drawback: Calculating flip time requires the evaluation of the division of two 4d
orientation tests. It is hard to make it robust.

T

T+

Rh

z

1 3 52 4

A 2d example: inserting a segment into a CDT by flips.

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 76 / 154

Polygon Insertion by Flips [Shewchuk 2003]

The idea: Move the lifted vertices vertically with a di↵erent speed, the lower convex
hull will change. Every change corresponds to a flip in the projected mesh.

The insight: Each flip happens at a unique ”time” – when a set of lifted vertices lie
on a hyperplane.

Sort the sequence of flips by their times, the flip process will not get stuck and thus
must terminate.

Kinetic Convex Hull

As the lifted vertices move vertically, use flips
to maintain the lower convex hull.

the flips cannot get stuck.
Insight: Because a convex hull always exists,

Dynamically changing the weights of the vertices.
A flip in R

d corresponds to a change in the convex hull in R
d+1.

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 75 / 154

Polygon Insertion by Cavity Retriangulation [Si & Gärtner 2005]

The polygon f subdivides the cavity R into two cavities C1 and C2.
(1) Construct a DT Di of the vertices of Ci ;
(2) Identifiy boundary faces of Ci in Di ;

If step (2) fails, then enlarges the cavity Ci ; go to (2); endif;
(3) Identifiy f in D1 and D2;
(4) Remove tetrahedra of D1 and D2 which lie outside of the cavity.

This algorithm needs only the InSphere predicate. It is easier to be made robust.

A 2d example: inserting a segment into a CDT by cavity retriangulation.

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 77 / 154

Polygon Insertion by Cavity Retriangulation [Si & Gärtner 2005]

Some existing polygons may be removed due to the cavity enlargement (the step
(2)). These polygons are re-inserted immediately after f is inserted.

The cavities of the removed polygons must fully contained in the enlarged cavity of
f – The cavity retriangulation algorithm terminates.

The complexity of this algorithm may be exponential with respect to the number of
inserting polygons. But it is not likely to happen in practice.A Hard Example for Tetrahedral Meshing

Inserting a polygon may cause some existing polygons missing.

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 78 / 154

Non-coplanar Polygons [Si & Shewchuk 2014]

Problems due to non-coplanar polygon.
I If both p and q present, then D1 and D2 are non-compatible at f .
I If none of p and q presents, then there exists a sliver abcd in the mesh.

This case can only be resolved by inserting a Steiner points in f .
I Use the encroachment rules of Delaunay refinement to choose one or more Steiner

points in f .

A vertex insertion algorithm in CDT is proposed.

This algorithm is implemented in TetGen, version 1.5.

a

p

d f

q

c

b

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 79 / 154

Polygon Insertion by Flips [Shewchuk 2003]

The flip-based algorithm:
I Modeling the flip time as a variable in the weights of vertices.
I Calculating and maintaining the potential flips using a priority queue.
I Perform flips until the queue is empty.

The algorithm runs in O(n2 log n) time.

A drawback: Calculating flip time requires the evaluation of the division of two 4d
orientation tests. It is hard to make it robust.

T

T+

Rh

z

1 3 52 4

A 2d example: inserting a segment into a CDT by flips.

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 76 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.35

Preserving Constraints

In many applications, a pre-discretized surface mesh is used as input, and it is
required that this surface mesh be exactly preserved in the generated tetrahedral
mesh, i.e., no subdivision of the surface mesh is allowed.

courtesy of acelab utexas

Hang Si si@wias-berlin.de An Introduction to Delaunay-based Mesh Generation and Adaptation 2017-08-02 30 / 66

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.36

Three classical methodsBoundary Recovery Methods

(1) Use edge/face swaps together with interior Steiner points insertion [George, Hecht,
& Saltel 1991] (in TetMesh-GHS3D).

(2) Insert Steiner points at where the boundaries and T intersect, delete vertices or
relocate them from the boundaries afterwards [Weatherill & Hassan 1994].

(3) Combine methods (1) and (2) [George, Borouchaki, & Saltel 2003] (in
TetMesh-GHS3D).

276 P. L. George et al., Automatic mesh generator

Step 0 steps 1,2,3 step 4

Steps 5,6 steps 7,8 Final step 9

Fig. 11. Step 0, steps 1, 2, 3, step 4, steps 5. 6, steps 7, 8. and step 9.

PROOF. Proposition 3.1 can be applied to each missing edge. Due to assumption (iii) it is
obvious that a previously created edge or an existing edge belonging to the given boundary
cannot be deleted. So Theorem 3.1 holds. Cl

REMARK 3.1. The proposed solution does not require the creation of extra points.

REMARK 3.2. The solution is valid for domains of general shape (convex or not) because of
step 2 of the general scheme mentioned in Section 1.

4. Solution for 3D geometry

In this case, we have an initial mesh (for instance due to the Voronoi’s method) which
contains all the points of the data (the given boundary) and the 8 extra points of the including
box. This initial mesh does not exactly fits the boundary in general (refer to Theorem 3.1):
some given edges and moreover some given faces are not included in the corresponding list of
this mesh.

So the problem is to derive a mesh from the initial one which exactly contains the data. As
the existence of all given edges does not guarantee the existence of all faces, but because it is a
necessary condition< it is convenient to consider two steps:
(i) problems due to missing given edges;

(ii) problems due to missing given faces.
The following subsection considers the case of the missing edges and the next

devoted to that of missing faces.

4.1. The case of missing edges

First, we consider the case of only one missing edge which can be seen as follows.

one is

2018 N. P. WEATHERILL AND 0. HASSAN

6.2. Boundary edge recovery

The procedure to recover a missing edge of a boundary face involves two steps. Firstly, it is
necessary to identify the faces, edges and points of tetrahedra which the edge intersects. Secondly,
local transformations involving tetrahedra are performed to recover the edge.

Consider a line joining two surface points A and B which is not contained in the tetrahedral
construction. The line does not exist because faces, edges or points of tetrahedra intersect the line
AB. The line segment from point A can intersect the tetrahedron containing A, in the direction of
AB, through a face, edge or point. In turn, the next line segment in the adjacent tetrahedron can
intersect through a face, edge or point and so on through to the tetrahedron which contains node
B. Hence, it is possible for the line AB to pass through a tetrahedron with a combination of

can be described in the following matrix. intersections, which

Line AB leaves a

Line AB passes into a tetrahedron through a
Node Edge Face

Node 1 1 0
tetrahedron through Edge 1 1 1

Face 0 1 0

In the above matrix, an entry of zero implies that the intersection through a tetrahedron affects
only that tetrahedron through which the line segment passes. An entry of unity, implies that the

f i Facz-Fpce Intersection w (3-3)

Node-Edge InterxctionTLpc (1-2)
and Edge-Node Intersection rLpc (2- 1)

Figure 5. Types of edge-tetrahedron intersections for missing surface edges

(1) [George, Hecht, and Saltel 1991] (2) [Weatherill and Hassan 1994]

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 82 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.37

Recover edge (face) by flips

A Revised Boundary Recovery Method [Si 2013]

This method uses the same procedures as those in [George et al. 1991; Weatherill
and Hassan 1994; George et al. 2003].

The edge removal algorithm [Si 2013] is employed in recovering edges and faces.
Edge (and face) recovery by flips:

I Maintain a list L of all faces that are intersecting an edge (or a face);
I Remove each face in L by either a 2-to-3 flip or by the edge removal algorithm;
I Stop either (i) L is empty, or (ii) no face in L can be removed;

If an edge (or a face) is not recovered by flips, split it by inserting a Steiner point in
it. Then continue recover the constraints by flips;

After all constraints are recovered, remove or relocate the Steiner point from
constraints.

This algorithm is implemented in TetGen.

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 86 / 154

A Motivation Example
A missing edge [c, d] is crossing a number of triangles that all share a
common line segment [a, b].

· August 7, 2016 · Page 24 (45)

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.38

The general n-m-flip

The general n-m-flip

Dassi, Kamenski, Si. Mesh improvement: MMPDE-smoothing & lazy flip · NUMGRID2016 · Page 9/27

The general n-m-flip

The general n-m-flip

Dassi, Kamenski, Si. Mesh improvement: MMPDE-smoothing & lazy flip · NUMGRID2016 · Page 9/27

The general n-m-flip

Dassi, Kamenski, Si. Mesh improvement: MMPDE-smoothing & lazy flip · NUMGRID2016 · Page 10/27

The general n-m-flip

Dassi, Kamenski, Si. Mesh improvement: MMPDE-smoothing & lazy flip · NUMGRID2016 · Page 10/27

The general n-m-flip

Dassi, Kamenski, Si. Mesh improvement: MMPDE-smoothing & lazy flip · NUMGRID2016 · Page 10/27

The general n-m-flip

Dassi, Kamenski, Si. Mesh improvement: MMPDE-smoothing & lazy flip · NUMGRID2016 · Page 10/27

The general n-m-flip

Dassi, Kamenski, Si. Mesh improvement: MMPDE-smoothing & lazy flip · NUMGRID2016 · Page 10/27

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.39

Where to insert interior Steiner points?How many Steiner points are necessary?

A1

A2 B2

C2

B1

C1

A2

A1

B1

B2

C1

C2

Figure: The (open) valid domain for placing Steiner points inside the Schönhardt polyhedron. A side view
(left) and a top view (right) are shown.

· August 7, 2016 · Page 7 (45)

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.40

Where to insert interior Steiner points (cont’d)?

12 Nadja Goerigk, Hang Si

A1A2C1 and A1A2B2,
B1B2A1 and B1B2C2,
C1C2B1 and C1C2A2.

So the polyhedron isn’t simple any more and doesn’t fulfill property (I) of
Theorem 1 (see Figure 9). Furthermore it is not a 3d manifold and so it is not
a valid polyhedron.

The question about decomposability doesn’t have an obvious answer, since
it is dependent on the definitions. By that it can happen that it is not decom-
posable, even though the volume already consists of two tetrahedra. Because
the connecting point is not a part of the set of vertices we use to define the
polyhedron with, we have to split the edges into two separate edges at this
point.

A1

A2 B2

B1

C1

C2

A1

A2

B1

B2

C1

C2

Fig. 9 The Schönhardt polyhedron with a rotation angle of # = 60�. The edges A1B2 and
A2C1, A1B2 and B1C2, and A2C1 and B1C2 are coplanar since the dihedral angles between
some faces is 0�. A side view (left) and a top view (right) are shown.

Now consider the limiting cases in Bagemihl’s construction. These are the
ones, in which the rotation angle is # = 0� or 60� and the ones in which one
chooses the additional points D1, . . . , Dk on a straight line connecting A1 and
A2 instead of lying on an arc or lying on a face of the tetrahedron A1A2G2G1

defined above.
First fix the angle to # = 0�, which means that the upper and lower

triangle build a prism like in the case above. One has to add the addition points
D1, . . . , Dk on the line segment connecting A1 and A2. By that, the polyhedron
stays indecomposable. However, this polyhedron becomes decomposable if we
change the diagonal B1C2 to C1B2.

If the angle is # = 60�, the (non-valid) polyhedron separates like before
into two parts whose volumes are connected only by a single point which is, or
is not, a part of the vertex set. Let’s call this point P . The arc containing the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.41

20 Nadja Goerigk, Hang Si

Fig. 13 The polyhedron after removing the sets T1, T2 and T3 of tetrahedra from �9. A
decomposition of this polyhedron into the two sets T4 and T5 of tetrahedra is given. The
internal edges are shown in brown.

This concludes our proof. ⇤

There are indeed many possibilities to place interior Steiner points that
may lead to a smaller number of interior Steiner points. However, we can
show that this number

⌃
k+1
2

⌥
=

⌃
n�5
2

⌥
of interior Steiner points is optimal in

the worst case.

Theorem 4 Given n 2 N�6, one can construct an a 3d polyhedron �n with n

vertices which has the property that one needs exactly
⌃
n�5
2

⌥
interior Steiner

points to decompose it.

Proof. We proof the Theorem by giving a general construction of a �n, so that
it will always need at least this number of interior Steiner points. We then get
the equality by Theorem 3. The basic idea is to control the overlap of the
intervals ta,jtb,j , j = 0, ..., n�6, as defined at the beginning of Section 3.3. By
the following construction we ensure that two consecutive intervals ta,jtb,j and
ta,j+1tb,j+1 overlap in their interior. Moreover, if two non-consecutive intervals
don’t overlap, we will obtain the desired number of interior Steiner points.

Fix n � 6 and start with non-coplanar points a,b, c,d 2 R3 as described in
Section 3.2. Then choose n�4 points gi, i = 0, ..., n�5 from the valid domain
of a curve in a zig-zag shape, like in the polyhedron in Figure 10. By moving
the points gi lower, so that the segments gia or gib resp. are nearly crossing
the line cd, we obtain non overlapping intervals ta,itb,i and ta,i+2tb,i+2. So, we
can achieve that except for the consecutive intervals ta,jtb,j and ta,j+1tb,j+1

with j = 0, ..., n � 6, no intervals overlap. Placing one interior Steiner point
slightly above each overlap of the intervals gives the number of

⌃
n�5
2

⌥
interior

Steiner points. One can decompose the polyhedron as described in the proof
of Theorem 3. ⇤

Figure 14 shows an particular example of such a polyhedron with 12 ver-
tices. The coordinates of the 12 vertices are given in Table 4. By our construc-
tion, this polyhedron satisfies the property that only two adjacent intervals
are overlapping. A pair of such intervals is illustrated in Figure 14 (c). There-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Construction of �n

Now the polyhedron �n, n = 6+ k, where k � 0, is constructed by choosing
the boundary faces listed in Table.

(1) (a, c,d), (b, c,d)

(2) (a, c,g0), (b, c,g0), (a,d,gk+1), (b,d,gk+1)

(3) (a,gi,gi+1), (b,gi,gi+1), where i = 0, . . . , k

a, b

c d

g0
g1 g2

g3
g4

a b

c, d

g0

g1 g2

g3
g4

· August 7, 2016 · Page 26 (45)

On Indecomposable Polyhedra and The Number of Interior Steiner Points 21

(a) (b)

(c) (d)

Fig. 14 An example polyhedron, �12, with 12 vertices. The coordinates of the vertices are
given in the Table 4. Di↵erent views of this polyhedron are shown in (a), (b), (c), and (d),
respectively. In particular, two overlappings intervals are shown in (c).

a b c d g0 g1 g2 g3

x -1.294 4.830 4.830 -3.536 4.253 -0.301 3.117 -2.183
y 10 0 10 0 6.532 9.760 2.999 8.657
z 4.830 1.294 -1.294 3.536 -2.426 0 -2.571 0.646

g4 g5 g6 g7

x 1.874 -3.330 0.163 -4.051
y 1.002 6.864 -0.105 3.184
z -1.808 1.350 -0.366 2.242

Table 4 A choice of the coordinates of the vertices of a �12. The geometry of this polyhedron
is shown in Figure 14. With these coordinates, this polyhedron needs at least 4 Steiner points
to be decomposed.

fore, this polyhedron needs at least 4 interior Steiner points to be decomposed,
which is optimal for this case.

4 Discussion

In this paper, we studied the question of how many interior Steiner points are
needed for some special classes of 3d indecomposable polyhedra.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Add interior Steiner points

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.42

A Placement of Interior Steiner Points

�0

�N

b1

bN

s0,0

s0,1
s1,1

s1,0

�1

b0

a0

z = xy + "

aN

a1 ↵N↵1↵0

z = xy + !

z = xy

sN,NaN

b1

bN

↵1

�1 �N

↵N↵0

.

. . .

. . .

s0,0

s0,1

s1,0

s1,1

sN,0

sN,1

s0,N s1,N

�0

b0a0

a1

Figure: The interior Steiner points, {si,j | i, j = 0, . . . , N}, are placed directly at the intersections of
the two set of lines in the xy-plane and all lie on the saddle surface z = xy + !, where 0 < ! < ".

· August 7, 2016 · Page 35 (45)

The Chazelle Polyhedron
The non-convex polyhedron constructed by Chazelle, known as the Chazelle
polyhedron, establishes a quadratic lower bound on the minimum number of
convex pieces for the 3d polyhedron partitioning problem.

z

y

x

a0

b0

bN

�N

aN

�0

↵N

↵0

Figure: Left: A saddle surface (a hyperbolic paraboloid). Right: The Chazelle polyhedron with three
notches, i.e., N = 2, on the top and the bottom faces, respectively.

· August 7, 2016 · Page 31 (45)

The Number of Interior Steiner Points

Theorem The reduced Chazelle polyhedron �s
N," needs (N + 1)2 interior

Steiner points as " ! 0.

�0

�N

b1

bN

s0,0

s0,1
s1,1

s1,0

�1

b0

a0

z = xy + "

aN

a1 ↵N↵1↵0

z = xy + !

z = xy

sN,NaN

b1

bN

↵1

�1 �N

↵N↵0

.

. . .

. . .

s0,0

s0,1

s1,0

s1,1

sN,0

sN,1

s0,N s1,N

�0

b0a0

a1

· August 7, 2016 · Page 42 (45)

Proof of Correctness

Theorem There exists a tetrahedralisation of �s
N," with the set S of interior

Steiner points.

(flipping lower edges)(flipping upper edges)

(flipping right edges)(flipping left edges)

s0,0

s0,0 s1,0 sN,0

sN,N

s0,0

s1,N

s1,0 sN,0

sN,0

s0,1 s1,1 sN,1

s0,N s1,N sN,N

s0,0 s1,0 sN,0

s0,1 s1,1 sN,1

s0,N s1,N sN,N

s0,1 s1,1 sN,1

s0,N s1,N sN,N

sN,Ns1,Ns0,N

sN,1s1,1s0,1

sN,0s1,0s0,0

s0,1 s1,1 sN,1

s0,N

s0,0 s1,0 sN,0

s0,1 s1,1 sN,1

s0,N s1,N

s1,0

sN,N

T m
tT s

t

T m
bT s

b

I = 0 I = bN+2
2 c

· August 7, 2016 · Page 41 (45)

The Chazelle Polyhedron
The non-convex polyhedron constructed by Chazelle, known as the Chazelle
polyhedron, establishes a quadratic lower bound on the minimum number of
convex pieces for the 3d polyhedron partitioning problem.

z

y

x

a0

b0

bN

�N

aN

�0

↵N

↵0

Figure: Left: A saddle surface (a hyperbolic paraboloid). Right: The Chazelle polyhedron with three
notches, i.e., N = 2, on the top and the bottom faces, respectively.

· August 7, 2016 · Page 31 (45)

Add interior Steiner points

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.43

Experiment 1 (TetGen v1.5)

Example: mohne (from INRIA Mesh Repository)

Input: 2760 points, 5560 triangles
Output: added 2 Steiner points

· August 7, 2016 · Page 16 (45)

Experiment 1 (TetGen v1.5)

Example: mohne (from INRIA Mesh Repository)

Input: 2760 points, 5560 triangles
Output: added 2 Steiner points

· August 7, 2016 · Page 16 (45)

Experiment 1 (TetGen v1.5)

Example: mohne (from INRIA Mesh Repository)

Input: 2760 points, 5560 triangles
Output: added 2 Steiner points

· August 7, 2016 · Page 16 (45)

Experiment 2 (TetGen v1.5)

Example: 03-machinery-part_cut (from INRIA Mesh Repository)

Input: 448 points, 1120 triangles
Output: added 8 Steiner points

· August 7, 2016 · Page 17 (45)

Experiment 2 (TetGen v1.5)

Example: 03-machinery-part_cut (from INRIA Mesh Repository)

Input: 448 points, 1120 triangles
Output: added 8 Steiner points

· August 7, 2016 · Page 17 (45)

Experiment 2 (TetGen v1.5)

Example: 03-machinery-part_cut (from INRIA Mesh Repository)

Input: 448 points, 1120 triangles
Output: added 8 Steiner points

· August 7, 2016 · Page 17 (45)

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.44

Mesh Refinement
3How Meshes Affect Solution

Small angles cause poor conditioning.

Skinny elements cause problems.

The number of elements matters.

& big errors in interpolated derivatives.
Large angles cause discretization error

For tetrahedra, this applies to the dihedral angles.

Fewer elements faster solution.

More elements more accurate solution.

(Not the plane angles!)

J. Shewchuk, IMR, 2005

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.45

Steiner point generationSteiner Points Generation

Advancing-front: [Lo 1991, Löhner 1996, Marcum & Weatherill 1995];

Sphere packing: [Shimada & Gossard 1995, Miller et al 1996];

Octree-based: [Mitchell & Vavasis 2000];

Longest edge subdivision: [Rivara 1997];

Delaunay Refinement: [Chew 1989, Ruppert 1995, Shewchuk 1998];

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 98 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.46

23

All new edges are at least as long as circumradius of
(because is at center of empty circumcircle).

Kill each skinny triangle by inserting vertex at circumcenter.
(Bowyer−Watson algorithm.)

Delaunay Refinement

v
t

v

v

[Alert: here comes the MAIN IDEA behind all Delaunay refinement algorithms]

t

J. Shewchuk, IMR, 2005

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.47

36

What if a circumcenter is outside the domain?

Then a boundary segment is encroached. Split it.

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.48

Steiner points insertion rulesPoint Insertion Rules

Rule 1: Split a segment if it is encroached.

Rule 2: Split a subface if it is encroached. However, if the new vertex would
encroaches upon a segment, reject the vertex. Split the encroached segment(s)
instead.

Rule 3: Split a badly-shaped tetrahedron. However, if the new vertex would
encroached upon a subface or a segment, reject the vertex. Split the encroached
subface(s) or segment(s) instead.

Rule 1 Rule 2 Rule 3

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 104 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.49

Delaunay refinementRupper and Shewhcuk’s Algorithm [Ruppert 1995, Shewchuk 1998]

DelaunayRefinement (X , ⇢0)
// X is a PLC; ⇢0 is a radius-edge ratio bound.
1 Initialize a set V of the vertices of X ;
2 Initialize a Delaunay tetrahedralization D of V ;
3 repeat:
4 Create a new point by rule i , i 2 {1, 2, 3};
5 Add v to V , update D of V ;
6 until {no new point can be generated};
7 return D of V ;

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 105 / 154

Rupper and Shewhcuk’s Algorithm [Ruppert 1995, Shewchuk 1998]

DelaunayRefinement (X , ⇢0)
// X is a PLC; ⇢0 is a radius-edge ratio bound.
1 Initialize a set V of the vertices of X ;
2 Initialize a Delaunay tetrahedralization D of V ;
3 repeat:
4 Create a new point by rule i , i 2 {1, 2, 3};
5 Add v to V , update D of V ;
6 until {no new point can be generated};
7 return D of V ;

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 105 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.50

Constrained Delaunay Refinement [Shewchuk & Si 2014]

Observation: small angles are “edge length reducers”.

Skinny tetrahedra get split.
Small edge lengths propagate.
Subsegment split again!

creating a very short edge.
Another vertex is inserted,

A subsegment is split.
New vertex encroaches upon
another subsegment.

Oops!

Small angles are ‘‘edge length reducers.’’

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 119 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.51

Fixing the Algorithm

• “Groom” input by splitting segments with
augmenting points.

• All segments at same length?

• By clusters separated by π/6.

• Same length modulo power of two.
• Somehow deal with circumcenter-midpoint.

Sangria seminar, 03.10.03 – p.9/18

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.52

Constrained Delaunay refinement
Constrained Delaunay Refinement [Shewchuk & Si 2014]

Input test-64-6 Tet mesh, 3, 733 vertices Tet mesh, 23, 727 tets
161 vertices, 70 polygons (cut along the Z-axis) (cut along the Y-axis)

refined “fan blades” remaining skinny tetrahedra plane angles
(radius-edge ratios > 2)

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 121 / 154

Constrained Delaunay Refinement [Shewchuk & Si 2014]

Input test-64-6 Tet mesh, 3, 733 vertices Tet mesh, 23, 727 tets
161 vertices, 70 polygons (cut along the Z-axis) (cut along the Y-axis)

refined “fan blades” remaining skinny tetrahedra plane angles
(radius-edge ratios > 2)

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 121 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.53 Slides by Long Chen, UCI

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.54

Di�culties

In 1998, Tim Baker (1948–2006) wrote:

In three dimensions the theory is far from developed. The main di�culties are the

following: (1) there exist configurations of boundary points and faces for which no

conforming grid of tetrahedra exists unless extra points are inserted, (2) although 3D

analogues of diagonal swapping exist, it does not appear possible to convert an

arbitrary triangulation into the corresponding Delaunay triangulations, (3) the presence

of slivers, formed by four coplanar points, can arise and indeed will often arise when

e↵orts are made to create a constrained Delaunay triangulation that conforms with a

prescribed boundary.

The Schönhardt flip 2-to-3 Sliver
polyhedron 3-to-2

Hang Si Introduction to Delaunay-based Tetrahedral Mesh Generation 5 / 154

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.55

Monotone sequences of flips and triangulations

11

11

1

1

flip (3,6,2,4)

1

2

4

5

6

3

1

4

5

2

3

6

flip (1,5,3,6)

flip (1,3,2,6)

flip (3,5,4,6)

2’ 1’

6

6’

5’

2’

4’

3’

1’

6

2

3

5

4

6’

5’

2’

4’

3’

1’

6

2

3

5

4

6’

5’

2’

4’

3’

1’

6

2

3

5

2

3

5

4

4

6’

5’

2’

5’

6’

4’

6’
3’

1’

4

6

2

5’

2’

3

5

4’

3’

4

5

3

2

6

1’

3’

4’

Figure 4: Left: the regular octahedron is decomposed into 4 tetrahedra. Right:
a sequence of edge flips corresponds to this tetrahedralisation.

Let A be a point set in the plane, A! be the lifted point set of A, and P
! is

the convex hull of A!. We call T a partial tetrahedralization (may be empty) of
P

! if it is a subset of any tetrahedralization of P!. To find a tetrahedralization
of P

!. We could start from the RT (or the FRT) of A, initialise a partial
tetrahedralization T0 := ;, perform a sequence of flips, make sure that every
flip corresponds to adding a new tetrahedron to T such that it remains a valid
partial tetrahedralization of P. Once we arrive the FRT (or the RT), we obtain
a tetrahedralization T of P!.

This motivate us to think the following question: given a (partial) tetrahe-
dralization T of P!, does it correspond to a sequence of flips? Moreover, can
this sequence of flips behave monotonically?

So far, it is only proven for a special case when A is the vertex set of a
cyclic polytope [3, Section 6.1.5]. The essential part of its proof is to show that
between any two lifted triangulations of A in Rd, there exists a triangulation
of the polyhedron in Rd+1 bounded by these two lifted triangulations without
new vertex. It is achieved by an explicit (very technical) construction of such
triangulation in Rd+1.

However, there are di�culties to directly generalise this result to an arbi-
trary point set in R2. The main di�culty is that there are 3d non-convex poly-
hedron which can not be tetrahedralised without additional vertices, such as
the Schönhardt polyhedron [16]. Moreover, the problem to determine whether
such a tetrahedralization exists or not is NP-complete [15].

1.4 Higher Stashe↵-Tamari Posets (HST)

Besides the flip graph structure, there is another structure on a point set by
placing a partial order on triangulations of this point set through flips [18, 5, 12].

Let C be the vertex set of a cyclic polytope C(n, 2) in R2 (see e.g. [20, Chap
0]), where n is the number of points of C. Let the four points pi,pj ,pk,pl 2 A,
where i < j < k < l, form a quadrilateral. A flip is called up-flip if it replaces

5

Sleator, Thurston, and Tarjan, Rotation distance, triangulations, and hyperbolic geometry, J. Amer.
Math. Soc. 1988

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.56

Transforming triangulations via flips

Delaunay triangulation

farthest point Delaunay triangulation

z = �1

z = x2 + y2

P =

z = 1

regular triangulation

farthest point regular triangulation

z = 1

z = �1

P!
=

z = !1

(1) (2)

Figure 1: Triangulations of a point set A in the plane. (1) The Delaunay (DT)
and farthest point Delaunay triangulations (FDT) are canonical projections of
the lower and upper faces of the convex hull of the lifted point set A+ in R3. The
DT contains all vertices of A, while the FDT only contains the vertices of the
convex hull of A. (2) The regular (RT) and farthest point regular triangulations
(FRT) are canonical projections of the convex hull of the lifted point set A

! in
R3, where ! : A ! R+ is a height function. In particular, some vertices of A
are neither vertices of the RT nor the FRT.

z=1

z=2

z=0
6

5

5

4

1

3
4

1

3 2

2

6

!

z = 2

z = 0

5

1

4

5
6

2

1

3 2
6

5

4

3

1

23
4

6

z = 0
4

1

23
4

6
5

5

23

1

6

(1) (2) (3)

Figure 2: Triangulations of a weighted point set A of 6 points in the plane. (1)
The lifted point set A

! is produced by the height function ! which sends the
vertices 1, 2, 3 to the plane z = 2, and the vertices 4, 5, 6 to the plane z = 1. (2)
The resulting regular (RT) and farthest point regular (FRT) triangulations. (3)
The non-regular triangulation.

3

The furtherest point Voronoi Diagram

V f
p = {x 2 Rd, kx� pk � kx� qk, 8q 2 S}

V f
p

p

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.57

The directed flip graph

1

5

4

3 2
6

4

1

5

6
3 2

4

1

5

6
3 2

4

1

5

6
3 2

6

1

5

4

3 2 23

1

4

6

5

3
6

1

5

4

2
6

1

5

4

3 2 23

1

4

6

5

23

1

4

6

5

5

3

1

2
6

4

5

3

1

2
6

4

5

3

1

2
6

4

2
6

1

5

4

3

3

4

1

5

2
6

3

4

1

5

2
6

3

4

1

5

2
6

6

1

5

4

3 2

34-16

15-24

26-35

15-24

26-3526-35

26-35
156-4

34-16

26-35
156-4 246-5

34-16

15-24
246-5156-4 345-6

26-35

345-6

246-5

15-24 156-4
34-16

345-6

26-35
26-35

126-5
234-6

34-16

15-24

135-4
26-35

126-4

135-6
234-5

123-6 123-4
123-5

Figure 6: The poset of directed flips of the weighted point set A of 6 points in
the plane (shown in Figure 2). This poset is produced using the forward-flips
from the RT of A (bottom) to the FRT of A (top). In each triangulation of
A, the green edges are locally non-regular (with respect to forward-flips) and
flippable. The (thin) black edges are also locally non-regular, but not flippable.
The thick black edges are locally regular. Each arrow means either a 2-2 or a 3-1
flip. In addition, each arrow has a number, like 34-56 or 123-4, which indicates
which flip is done. For example, 34-56 means a 2-2 flip which replaces edge 34
by 56, and 123-4 means a 3-1 flip which removes the vertex 4 from the face 123,
i.e., the three faces 124, 234, and 314 are replaced by the face 123. The four
vertices of each flip are the vertices of the new created tetrahedron. There is no
3-1 flip in this example.

8

2d_6_points.node

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.58

The directed flip graph

1

5

4

3 2
6

4

1

5

6
3 2

4

1

5

6
3 2

4

1

5

6
3 2

6

1

5

4

3 2 23

1

4

6

5

3
6

1

5

4

2
6

1

5

4

3 2 23

1

4

6

5

23

1

4

6

5

5

3

1

2
6

4

5

3

1

2
6

4

5

3

1

2
6

4

2
6

1

5

4

3

3

4

1

5

2
6

3

4

1

5

2
6

3

4

1

5

2
6

6

1

5

4

3 2

34-16

15-24

26-35

15-24

26-3526-35

26-35
156-4

34-16

26-35
156-4 246-5

34-16

15-24
246-5156-4 345-6

26-35

345-6

246-5

15-24 156-4
34-16

345-6

26-35
26-35

126-5
234-6

34-16

15-24

135-4
26-35

126-4

135-6
234-5

123-6 123-4
123-5

Figure 6: The poset of directed flips of the weighted point set A of 6 points in
the plane (shown in Figure 2). This poset is produced using the forward-flips
from the RT of A (bottom) to the FRT of A (top). In each triangulation of
A, the green edges are locally non-regular (with respect to forward-flips) and
flippable. The (thin) black edges are also locally non-regular, but not flippable.
The thick black edges are locally regular. Each arrow means either a 2-2 or a 3-1
flip. In addition, each arrow has a number, like 34-56 or 123-4, which indicates
which flip is done. For example, 34-56 means a 2-2 flip which replaces edge 34
by 56, and 123-4 means a 3-1 flip which removes the vertex 4 from the face 123,
i.e., the three faces 124, 234, and 314 are replaced by the face 123. The four
vertices of each flip are the vertices of the new created tetrahedron. There is no
3-1 flip in this example.

8

COMPUTING TRIANGULATIONS USING ORIENTED MATROIDS 13

1235
1356
1456

46
24
23

1235
1345
3456

46
26
12

1234
2345
345612

16
56

2456
1246
123645

35
13

1234
2346
245613

15
56

b3b4

23
34
45 1236

1256
1456

SA

b1

b5

b6

b2

0

5

1

3

2

6

5

2

6

1

3
4

5

6

1 2
5

5

6

4

1
2 1

3

6

2

44

4

5

1

4

2

6

3

3

3

FIGURE 11. The hexagon as the secondary polytope of the prism P.
Left: One maximal cone of the secondary fan is highlighted. Pairs of dig-
its inside such a cone � index vertices bi in whose positive span � lies,
and the complementary 4-tuples label the simplex of the triangulation
of A that � corresponds to. Right: Triangulations corresponding to ver-
tices of ⌃(P). Edges of ⌃(P) representing flips between triangulations.

By interpreting the rows of B as six points b1, b2, . . . , b6 in R2, we arrive at the Gale
transform A⇤ of A. In general, if A consists of n points in d-space (and A does not
lie in any lower-dimensional subspace), then A⇤ is made up of n points in (n - d - 1)-
space. Now consider the set C(A) of all full-dimensional positive cones spanned by the
points in A⇤ with apex in 0, together with the set R of all their facets. The chamber
complex eC(A) of C(A) is the union of all full-dimensional polyhedral cones whose facets
are facets of cones in C(A), but whose relative interior is not crossed by any member of R.
In our two-dimensional example, the set R consists of the six rays

R =
⌦

R�0
hbii : 1  i  6

↵
,

so eC(A) is given by the following list of cones. See Figure 11 (left).

eC(A) =
⌦

R�0
hb1, b6i, R�0

hb6, b2i, R�0
hb2, b4i,

R�0
hb4, b3i, R�0

hb3, b5i, R�0
hb5, b1i

↵

We now consider each cone � 2 eC(A) in turn, and write down the generators of all
cones in C(A) that contain �. For instance, � = R�0

hb1, b6i lies in the cones R�0
hb5, b6i,

R�0
hb1, b6i, and R�0

hb1, b2i of C(A), and the complements {1, 2, 3, 4}, {2, 3, 4, 5}, and
{3, 4, 5, 6} of these index sets correspond precisely to a triangulation of P! Since there are
six maximal cones in eC(A), we expect each one of them to correspond to one of the six
regular triangulations of P.
In fact this is true, and even more: The set eC(A) is a complete polyhedral fan, which

means that the cones in eC(A) intersect precisely in common faces, and together span all
of Rn-d-1. This fan is called the secondary fan ofA. It has the additional property that it
is the normal fan of a certain polytope in Rn-d-1, which says that the vectors contained
in a fixed cone of eC(A) are just the normal vectors of hyperplanes supporting exactly one
face of this polytope. It now comes as no surprise that this polytope is the one defined to
be the secondary polytope ⌃(A) of A. Of course, this construction only determines ⌃(A)

3D Indecomposable Polyhedra

There are 3d simple polyhedra which cannot be tetrahedralized without extra
vertices [Lennes 1911, Schönhardt 1928].

Delaunay triangulations exist in all dimensions.

Why haven’t CDTs been generalized beyond E²?

One reason: not every polyhedron can be
tetrahedralized without extra vertices.

Schönhardt’s
polyhedron

The Schönhardt Polyhedron [1928]

· Nov. 01, 2016 · Page 14 (67)

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.59

6.3 Characterisation of external nodes of the poset

When ! is neither convex nor concave, starting from an arbitrary triangulation of A,
a monotone sequence of directed flips (up- or down-flips) might end at a non-regular
triangulation of A which is an external node of this poset. Besides the non-regular
property, we show another property of these external nodes (triangulations).

Definitions We assume a given poset is produced by one of the two directed flips
(up- and down-flips). We call the minimum and maximum nodes of this poset lower
extreme and upper extreme nodes of this poset, respectively. External nodes which are
not extreme nodes are called non-extreme nodes of this poset. We further distinguish
two types of the non-extreme nodes. We call a non-extreme node upper non-extreme
if there exists no directed flip in this triangulation towards the triangulation of the
upper extreme node, and call it lower non-extreme if there exists no directed flip from
this triangulation towards the triangulation of the lower extreme node. Figure 27 Left
illustrates these definitions.

the upper extreme node

the lower extreme node

an upper
non-extreme

node

an lower
non-extreme

node

!

an upper interior vertex
a lower interior vertex

Figure 27: Left: Assume ! is neither convex nor concave. An example of a

poset of triangulations of (A, !). Extreme nodes, upper non-extreme nodes,

and lower non-extreme nodes are shown. Right: The lower and upper interior

vertices of a point set (A, !).

A vertex of A is an interior vertex if it is not on the convex hull of A. We
distinguish two types of the interior vertices of A. We call an interior vertex a 2 A

upper interior if the lifted point a0 appears in the triangulation of the upper extreme
node. and call it lower interior if a0 appears in the triangulation of the lower extreme
node, see Figure 27 Right for examples.

Redundant interior vertices By Theorem 12, when the directed flips are up-
flips, if a triangulation contains no interior vertices of A, then it must can be trans-
formed into the farthest point regular triangulation of (A,!) since there is no 3-1
flip (vertex deletion) needed. Hence this triangulation must not be an upper extreme
node. We then can state the following property of all non-extreme nodes of this poset.

(1) Any triangulation corresponds to an upper non-extreme node in this poset must
contain lower interior vertices of A.

30

The directed flip graph (continued)

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.60

Surface mesh generation

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.61

B-reps (Boundary representations)

Steve Owen, 14th IMR, short course

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.62

Parametric Space Mesh Generation

•Use essentially the same isotropic methods for 2D mesh generation, except distances and angles
are now measured with respect to the local metric tensor M(X).
•Can use Delaunay (George, 99) or Advancing Front Methods (Tristano,98)

Steve Owen, 14th IMR, short course

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.63

Metric (differential geometry)

Carl Friedrich Gauß (1777-1855)

Bernhard Riemann (1826-1866)

Mathematics

A Riemannian metric g on a smooth manifold M is a smoothly
chosen inner product gx : TxM ⇥ TxM ! R on each of the tangent
spaces TxM of M satisfying:

(1) g(u, v) = g(v , u), 8u, v 2 TxM;

(2) g(u, v) � 0, 8v 2 TxM; and

(3) g(v , v) = 0 () v = 0.

A special case, when M = Rd , the real d-dim Euclidean space, g is
a d ⇥ d symmetric positive definite matrix.

Mathematics

A metric allows defining distances, areas and angles on the manifold
M. The length of a vector v 2 TxM:

kvk =
p
g(v , v) =

p
vTgv . in matrix form

The angle ✓ between two vectors u, v 2 TxM is:

cos(✓) =
g(u, v)
kukkvk

Let � be a curve from a to b in M, the curve length

lg(�) =

Z b

a

p
k�0(t)kdt, t 2 [a, b].

r 2

r 1

p

µ1(p)

µ2(
p)

https://en.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.64

Metric-based anisotropic mesh generation/adaptation

Bossen−Heckbert [1996]
Shimada−Yamada−Itoh [1997]

George−Borouchaki [1998]
Li−Teng−Üngör [1999]

Generating Anisotropic Meshes
Heuristic Algorithms for

Introduction

Previous Work

Anisotropic simplicial 2D or 3D meshes
• Ellipses packing Li Teng Ungor (99) , Yamakawa Shimada (03)
• Anisotropic Delaunay refinement Borouchaki George et al. (97)
Frey Alauzet (2004), Dobrzynsk Frey (08)

• Continuous mesh Loseille Alauzet (09)
• Anisotropic mesh optimization
Pliant method Bossen Heckbert (96)
Li Shepard Beall (2005)
• Anisotropic Voronoi diagrams, Labelle Shewchuck (03), Boissonnat et al(08).

Anisotropic surface meshes
• Alliez et al (03), based on prinicipal curvature lines
• Jiao et al (06), anisotropic adaptation
using Garland Heckbert quadratic error

• Azernikov Fischer 05 , grid based
• Cheng at al (06) based on anisotropic Voronoi diagrams
• Geodesic distances on Riemanian manifold

Leibon Letscher (00), Bougleux Peyre Cohen (08)

MY (INRIA Sophia Antipolis) Anisotropic Delaunay Meshes WIAS, May 2011 3 / 41

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.65

Geometry approximation
Geometric Approximation

Figure: Schwartz’s lantern: an example of Hausdor↵ convergence only.

Na Lei (Dalian University of Technology) Remeshing Based on Conformal Uniformization March 8th, 2023 4 / 30

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.66

Example: wing 33

uv xyz

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.67

Example: wing 33

Riemann metric anisotropic mesh

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.68

Example: wing 33

surface mesh from anisotropic Riemann metric

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.69

Example: wing 33

Riemann + curvature metric anisotropic mesh

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.70

Example: wing 33

surface mesh from anisotropic Riemann + curvature metric

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.71

Anisotropic Delaunay refinement

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.72

Non uniform metric

F. Labelle and J. Shewchuk, 2016

Quadtree−based methods can
be adapted to horizontal and
vertical stretching, but not to
diagonal stretching.

Delaunay triangulations lose
their global optimality properties
when adapted to anisotropy. No
‘‘empty circumellipse’’ property.

Common approaches to guaranteed−quality mesh
generation do not adapt well to anisotropy.

A Hard Problem (Especially in Theory)

Delaunay triangulation
is not globally defined.

No “empty circum-ellipse”
property.

II. Anisotropic Voronoi Diagrams

An anisotropic Voronoi diagram

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.73

Introduction

Labelle and Shewchuck approach

Let D ⌃ Rd be a domain
with a metric field defined on D :
�p ⌦ D �⌥ Mp.

dp(x , y) =
q

(x � y)tMp(x � y)

Anisotropic Voronoi diagram
P a set of sites in D

�p ⌦ P , Voronoi cell V (p)

V (p) = {x ⌦ Rd : dp(p, x) ⌅ dq(q, x),

�q ⌦ P , q ↵= p}

Cells are not connected.
The dual is not a triangulation.
Labelle and Shewchuck approach :
refine the set of sites until
the dual is a triangulation.
Works only in 2D.

MY (INRIA Sophia Antipolis) Anisotropic Delaunay Meshes WIAS, May 2011 8 / 41

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.74

Locally uniform Anisotropic Delaunay Mesh (M. Yvinec, INRIA)

Introduction

Our approach

Locally Uniform Anisotropic Delaunay Meshes

Build a mesh such that:
the star of each vertex is Delaunay
and well shaped
wrt the metric at that vertex.

V set of vertices, v ⌦ V :
Mv metric at v
Delv (V) Delaunay triangulation of V
computed with metric Mv

Sv : the star of v in Delv (V)

Overview of the meshing algorithm

I Maintain the set of stars S(V) = {Sv : v ⌦ V }
I Refine V until stars are consistent

MY (INRIA Sophia Antipolis) Anisotropic Delaunay Meshes WIAS, May 2011 9 / 41

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.75

Locally uniform Anisotropic Delaunay Mesh (M. Yvinec, INRIA)

Introduction

Inconsistencies

v

w

x

y
()w wxy�

()v vwx�

vS
wS

Inconsistency : some simplex ⌦ with vertices {v ,w , . . .}
appears in star Sv but not in star Sw .

MY (INRIA Sophia Antipolis) Anisotropic Delaunay Meshes WIAS, May 2011 10 / 41

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.76

Anisotropic Delaunay Refinement (M. Yvinec, INRIA)
Anisotropic Meshing Algorithm

Meshing Algorithm

V current set of sites, S(V) = {Sv : v ⌦ V } the star set
Domain ⌦: each star Sv is restricted to ⌦

i.e. Sv = {⌦ ⌦ Delv (V) : v ⌦ ⌦ and cv (⌦) ⌦ ⌦}

Apply following refinement rules with priority order:

1. Sizing field - Distorsion
While �⌦ ⌦ Sv s.t. rv (⌦) ⇧ � lf(cv (⌦)), refine ⌦

2. Radius-edge ratio
While �⌦ ⌦ Sv s.t. �v (⌦) ⇧ �0, refine ⌦

3. Slivers
While � a sliver ⌦ ⌦ Sv (�v (⌦) ⌅ �0, v (⌦) ⌅ 0), refine ⌦

4. Inconsistencies
While � an inconsistent simplex ⌦ ⌦ Sv , refine ⌦

MY (INRIA Sophia Antipolis) Anisotropic Delaunay Meshes WIAS, May 2011 11 / 41

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.77

Anisotropic mesh improving

Figure 8: Control over 2D anisotropy. For a given sizing field, we can independently control the anisotropy of an OVT mesh. From left to
right: isotropic (CVT), 5:1 and 30:1 (closeups, with tightest ellipses depicted in red).

Figure 9: Sharp anisotropy change. Optimal Voronoi Tessellation
for f(x) = x

2
+10

�5
y
2
+y

4 (left) over a disk of radius 0.25 cen-
tered at the origin produces a sudden change of anisotropy (center),
which is well captured even for a relatively small number of sites
(right, closeup with cells in blue and tightest ellipses in red) .

achieved. Fig. 12 shows spatially-varying anisotropy instead (us-
ing a 3D extension to the anisotropy tensor used in Fig. 13). Once
again, control over anisotropy is effective: the cell shapes follow
the designated anisotropy metric without any user intervention.

Design of domain-adapted anisotropy and density. For den-
sity adaptation, we found that the sizing field construction of Al-
liez et al. [2005] (which computes a maximal K-Lipschitz function
µlfs(x) that does not exceed the local feature size (lfs) on the bound-
ary of the domain; see their Eq. (9)) is a very convenient way to
adapt the local volume of cells to the geometry of the domain, see
Fig. 5. The right choice of sizing field is, however, very application-
dependent. The design of an anisotropic function is also entirely
dependent on the application, and a function can always be con-
structed so that its Hessian best fits, in the Frobenius norm, a given
metric. If the anisotropy is prescribed only at a few locations in the
domain, quadratic programming can be used to find the smoothest
function f with proper Hessian: the condition of convexity is a sim-
ple linear constraint per (n�1)-simplex. The user can thus design
very anisotropic 2D and 3D meshes which, once used in a simula-
tion, will offer controlled, realistic tearing and cracking patterns—
for instance along fiber directions for wooden structures (Fig. 10).

Timing. As a variational method, our algorithm strives to achieve
high quality anisotropic meshes at the cost of longer computation
time. However, our algorithm is strictly equivalent to existing CVT

Figure 10: Control over 3D anisotropy. Optimal Voronoi Tessella-
tions of a sphere: isotropic (CVT, inset), 2:1:1, 4:1:1, and 10:1:1.

methods in terms of numerical complexity. In 2D, a typical Lloyd
iteration (e.g., Fig. 13) with 2K sites takes around 0.1s, while 100K
sites require about 4s. Our Lloyd algorithm running on a 3D exam-
ple (e.g., Fig. 12) with 30K sites takes around 40s per iteration.

6 Limitations
It should be pointed out that our anisotropic meshing comes with a
few challenges and limitations in practice, as we discuss next.

Anisotropy vs. domain shape. If the specified convex function f

from which our formulation is derived is arbitrary, anisotropy and
local geometry may conflict, since there may not be enough room
locally near a boundary to fit a prescribed anisotropy, preventing
the approach from generating well-adapted meshes even with nu-
merous refinements. Fu et al. [2014] addressed this issue for sim-
plicial anisotropic meshing by simply preventing further refinement
if an edge length in the local metric becomes too small. This is a
practical fix, but the generated output will no longer conform to the
Hessian of the input function. Instead, our use of density control
allows us to reduce the sizing near boundary (through the Lipschitz
sizing field from [Alliez et al. 2005], see Sec. 5) without changing
the anisotropy, hence eliminating this issue completely. However,
we pay the price of ending up with more cells so that anisotropy of
cells and boundary geometry do not conflict.

General tensor-adapted meshing. In computational physics,
simulation of phenomena that are anisotropic due to the physical
or mechanical properties of the domain calls for the generation of
a mesh adapted to a given symmetric and positive definite (SPD)
tensor field �. In general, this anisotropic tensor is not confor-
mally equivalent to the Hessian of a function (thus, not of the form
⇢Hess[f]), so one cannot directly use the machinery described
above for this task. In order to construct an algorithm that can gen-
erate convex cells adapted to arbitrary SPD tensors by leveraging
the properties of our anisotropic technique, we can adapt to our
dual setting an approach based on local convex functions [Loseille
and Alauzet 2009; Fu et al. 2014] as follows. A local convex func-
tion fi is now associated to each site xi, and each local cell is made
to best fit this function by minimizing the modified energy, with T

i
i

being the hyperplane tangent to fi at xi:

E�-OVT =

NX

i=1

Z

Vi

⇢(x)

✓
fi(x)� T

i
i (x)

◆
dx

Compared to its primal counterpart, we need to deal with maintain-
ing a cell complex while the per-cell energy is being minimized. A
simple approach consists in working with a primal mesh based on
the sites xi, for which each n-simplex corresponds to a dual ver-
tex of the cell complex. Connectivity changes are thus done on the
primal mesh, and dual vertices are consequently updated based on
the optimal positions deduced from the local functions. However,
searching for the optimal connectivity now needs to be achieved
through local flips [Loseille and Alauzet 2009; Fu et al. 2014].

Figure 8: Control over 2D anisotropy. For a given sizing field, we can independently control the anisotropy of an OVT mesh. From left to
right: isotropic (CVT), 5:1 and 30:1 (closeups, with tightest ellipses depicted in red).

Figure 9: Sharp anisotropy change. Optimal Voronoi Tessellation
for f(x) = x

2
+10

�5
y
2
+y

4 (left) over a disk of radius 0.25 cen-
tered at the origin produces a sudden change of anisotropy (center),
which is well captured even for a relatively small number of sites
(right, closeup with cells in blue and tightest ellipses in red) .

achieved. Fig. 12 shows spatially-varying anisotropy instead (us-
ing a 3D extension to the anisotropy tensor used in Fig. 13). Once
again, control over anisotropy is effective: the cell shapes follow
the designated anisotropy metric without any user intervention.

Design of domain-adapted anisotropy and density. For den-
sity adaptation, we found that the sizing field construction of Al-
liez et al. [2005] (which computes a maximal K-Lipschitz function
µlfs(x) that does not exceed the local feature size (lfs) on the bound-
ary of the domain; see their Eq. (9)) is a very convenient way to
adapt the local volume of cells to the geometry of the domain, see
Fig. 5. The right choice of sizing field is, however, very application-
dependent. The design of an anisotropic function is also entirely
dependent on the application, and a function can always be con-
structed so that its Hessian best fits, in the Frobenius norm, a given
metric. If the anisotropy is prescribed only at a few locations in the
domain, quadratic programming can be used to find the smoothest
function f with proper Hessian: the condition of convexity is a sim-
ple linear constraint per (n�1)-simplex. The user can thus design
very anisotropic 2D and 3D meshes which, once used in a simula-
tion, will offer controlled, realistic tearing and cracking patterns—
for instance along fiber directions for wooden structures (Fig. 10).

Timing. As a variational method, our algorithm strives to achieve
high quality anisotropic meshes at the cost of longer computation
time. However, our algorithm is strictly equivalent to existing CVT

Figure 10: Control over 3D anisotropy. Optimal Voronoi Tessella-
tions of a sphere: isotropic (CVT, inset), 2:1:1, 4:1:1, and 10:1:1.

methods in terms of numerical complexity. In 2D, a typical Lloyd
iteration (e.g., Fig. 13) with 2K sites takes around 0.1s, while 100K
sites require about 4s. Our Lloyd algorithm running on a 3D exam-
ple (e.g., Fig. 12) with 30K sites takes around 40s per iteration.

6 Limitations
It should be pointed out that our anisotropic meshing comes with a
few challenges and limitations in practice, as we discuss next.

Anisotropy vs. domain shape. If the specified convex function f

from which our formulation is derived is arbitrary, anisotropy and
local geometry may conflict, since there may not be enough room
locally near a boundary to fit a prescribed anisotropy, preventing
the approach from generating well-adapted meshes even with nu-
merous refinements. Fu et al. [2014] addressed this issue for sim-
plicial anisotropic meshing by simply preventing further refinement
if an edge length in the local metric becomes too small. This is a
practical fix, but the generated output will no longer conform to the
Hessian of the input function. Instead, our use of density control
allows us to reduce the sizing near boundary (through the Lipschitz
sizing field from [Alliez et al. 2005], see Sec. 5) without changing
the anisotropy, hence eliminating this issue completely. However,
we pay the price of ending up with more cells so that anisotropy of
cells and boundary geometry do not conflict.

General tensor-adapted meshing. In computational physics,
simulation of phenomena that are anisotropic due to the physical
or mechanical properties of the domain calls for the generation of
a mesh adapted to a given symmetric and positive definite (SPD)
tensor field �. In general, this anisotropic tensor is not confor-
mally equivalent to the Hessian of a function (thus, not of the form
⇢Hess[f]), so one cannot directly use the machinery described
above for this task. In order to construct an algorithm that can gen-
erate convex cells adapted to arbitrary SPD tensors by leveraging
the properties of our anisotropic technique, we can adapt to our
dual setting an approach based on local convex functions [Loseille
and Alauzet 2009; Fu et al. 2014] as follows. A local convex func-
tion fi is now associated to each site xi, and each local cell is made
to best fit this function by minimizing the modified energy, with T

i
i

being the hyperplane tangent to fi at xi:

E�-OVT =

NX

i=1

Z

Vi

⇢(x)

✓
fi(x)� T

i
i (x)

◆
dx

Compared to its primal counterpart, we need to deal with maintain-
ing a cell complex while the per-cell energy is being minimized. A
simple approach consists in working with a primal mesh based on
the sites xi, for which each n-simplex corresponds to a dual ver-
tex of the cell complex. Connectivity changes are thus done on the
primal mesh, and dual vertices are consequently updated based on
the optimal positions deduced from the local functions. However,
searching for the optimal connectivity now needs to be achieved
through local flips [Loseille and Alauzet 2009; Fu et al. 2014].

M. Budniskiy, B. Liu, F. De Goes, Y. Tong, P. Alliez, M. Desbrun, Optimal Voronoi Tessellations with Hessian-
based Anisotropy. ACM Transactions on Graphics, Volume 35, Issue No. 6, Artical No. 242, pp 1—12, 2016

X. Fu, Y. Liu, J. Snyder, B. Guo, Anisotropic Simplical Meshing Using Local Covex Functions. ACM
Transactions on Graphics, Volume 33, Issue No. 6, Article Number 182, pp 1—11, 2014

Anisotropic Simplicial Meshing Using Local Convex Functions

Xiao-Ming Fu⇤ † Yang Liu† John Snyder† Baining Guo† ⇤
⇤University of Science and Technology of China †Microsoft Research

Figure 1: Anisotropic meshes generated by our method. Left: 2D meshing. The anisotropic metric is defined as the Hessian of an analytic
function evincing a large range of anisotropy ratios (� 2 [1.9, 394.4]). Zoom in on the image to see meshing details. Middle: 3D surface
meshing of the Happy Buddha from curvature tensors estimated from a high-resolution reference mesh (115474 vertices). Our relaxation
produces a high quality result (63284 vertices) starting with an initial low-resolution mesh (5000 vertices). Right: volumetric meshing in a 3D
cube. Anisotropy changes substantially (� 2 [1, 40]) and rapidly over the domain. The lower image shows a cross-section.

Abstract

We present a novel method to generate high-quality simplicial
meshes with specified anisotropy. Given a surface or volumetric
domain equipped with a Riemannian metric that encodes the desired
anisotropy, we transform the problem to one of functional approx-
imation. We construct a convex function over each mesh simplex
whose Hessian locally matches the Riemannian metric, and itera-
tively adapt vertex positions and mesh connectivity to minimize the
difference between the target convex functions and their piecewise-
linear interpolation over the mesh. Our method generalizes optimal
Delaunay triangulation and leads to a simple and efficient algorithm.
We demonstrate its quality and speed compared to state-of-the-art
methods on a variety of domains and metrics.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric algorithms, languages, and
systems

Keywords: anisotropic meshing, locally convex triangulation

Links: DL PDF

1 Introduction

The term “anisotropy” characterizes the spatially-varying sizes, ori-
entations and aspect ratios of mesh elements. Controlling anisotropy
when generating meshes is essential in a wide variety of applications
including geometric modeling, physical simulation, field visualiza-
tion, and mechanical engineering.

Many anisotropic meshing techniques have been proposed in the
last two decades. Extending the circumsphere property generalizes
Delaunay triangulation to handle anisotropic meshing [Thompson
et al. 1998; Frey and George 2008]. Particle-based approaches [Shi-
mada et al. 2000; Zhong et al. 2013] apply repulsive forces that
conform to the desired anisotropic distance between vertices. The
Voronoi diagram can also be generalized in terms of anisotropic
geodesic distance, yielding the anisotropic Voronoi diagram (AVD).
Refining [Labelle and Shewchuk 2003] or optimizing [Du and Wang
2005] the AVD and taking its dual yields yet another strategy.

These methods directly sample or adjust vertices so that, under
the inverse transformation induced by the Riemannian metric, the
mesh has nearly unit-length edges and equilateral simplices. They
have two main limitations. First, they are expensive. It is especially
costly to construct and refine the AVD, accumulate forces from many
neighboring particles, or evaluate Riemannian geodesic distance in
complex domains. Second, their output leaves room for improve-
ment in reproducing the targeted anisotropy. A few methods tackle
this problem by bounding specific quality metrics like a radius-edge
or sliver ratio [Labelle and Shewchuk 2003; Boissonnat et al. 2008b;
Boissonnat et al. 2014], but only work for smooth anisotropic fields
in domains without sharp boundary features. Despite these guar-
antees, overall mesh quality remains insufficient, both visually and
in terms of simple objective measures of its match to the specified
anisotropy (see comparisons in Section 4).

Anisotropic Simplicial Meshing Using Local Convex Functions

Xiao-Ming Fu⇤ † Yang Liu† John Snyder† Baining Guo† ⇤
⇤University of Science and Technology of China †Microsoft Research

Figure 1: Anisotropic meshes generated by our method. Left: 2D meshing. The anisotropic metric is defined as the Hessian of an analytic
function evincing a large range of anisotropy ratios (� 2 [1.9, 394.4]). Zoom in on the image to see meshing details. Middle: 3D surface
meshing of the Happy Buddha from curvature tensors estimated from a high-resolution reference mesh (115474 vertices). Our relaxation
produces a high quality result (63284 vertices) starting with an initial low-resolution mesh (5000 vertices). Right: volumetric meshing in a 3D
cube. Anisotropy changes substantially (� 2 [1, 40]) and rapidly over the domain. The lower image shows a cross-section.

Abstract

We present a novel method to generate high-quality simplicial
meshes with specified anisotropy. Given a surface or volumetric
domain equipped with a Riemannian metric that encodes the desired
anisotropy, we transform the problem to one of functional approx-
imation. We construct a convex function over each mesh simplex
whose Hessian locally matches the Riemannian metric, and itera-
tively adapt vertex positions and mesh connectivity to minimize the
difference between the target convex functions and their piecewise-
linear interpolation over the mesh. Our method generalizes optimal
Delaunay triangulation and leads to a simple and efficient algorithm.
We demonstrate its quality and speed compared to state-of-the-art
methods on a variety of domains and metrics.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric algorithms, languages, and
systems

Keywords: anisotropic meshing, locally convex triangulation

Links: DL PDF

1 Introduction

The term “anisotropy” characterizes the spatially-varying sizes, ori-
entations and aspect ratios of mesh elements. Controlling anisotropy
when generating meshes is essential in a wide variety of applications
including geometric modeling, physical simulation, field visualiza-
tion, and mechanical engineering.

Many anisotropic meshing techniques have been proposed in the
last two decades. Extending the circumsphere property generalizes
Delaunay triangulation to handle anisotropic meshing [Thompson
et al. 1998; Frey and George 2008]. Particle-based approaches [Shi-
mada et al. 2000; Zhong et al. 2013] apply repulsive forces that
conform to the desired anisotropic distance between vertices. The
Voronoi diagram can also be generalized in terms of anisotropic
geodesic distance, yielding the anisotropic Voronoi diagram (AVD).
Refining [Labelle and Shewchuk 2003] or optimizing [Du and Wang
2005] the AVD and taking its dual yields yet another strategy.

These methods directly sample or adjust vertices so that, under
the inverse transformation induced by the Riemannian metric, the
mesh has nearly unit-length edges and equilateral simplices. They
have two main limitations. First, they are expensive. It is especially
costly to construct and refine the AVD, accumulate forces from many
neighboring particles, or evaluate Riemannian geodesic distance in
complex domains. Second, their output leaves room for improve-
ment in reproducing the targeted anisotropy. A few methods tackle
this problem by bounding specific quality metrics like a radius-edge
or sliver ratio [Labelle and Shewchuk 2003; Boissonnat et al. 2008b;
Boissonnat et al. 2014], but only work for smooth anisotropic fields
in domains without sharp boundary features. Despite these guar-
antees, overall mesh quality remains insufficient, both visually and
in terms of simple objective measures of its match to the specified
anisotropy (see comparisons in Section 4).

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.78

Teapot (step)

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.79

surface patch 11

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.80

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.81

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.82

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.83

Joint work with Prof. Lei and Prof. Gu, IMR 2023
Surface Remeshing Based on Conformal Uniformization

Key Idea : Convert 3D meshing to 2D

1 Flatten a curved surface onto a planar domain using
conformal(angle-preserving) mappings;

2 Generate a high quality mesh on the planar domain;

3 Pull back the triangulation from the planar domain to the curved
surface.

A conformal mapping maps the planar Delaunay triangulations to the
geodesic Delaunay triangulations on the surface. The sampling density on
the plane can be adapted, such that the sampling on the surface normal
cycle is uniform. This produces high quality surface meshes.

Na Lei (Dalian University of Technology) Remeshing Based on Conformal Uniformization March 8th, 2023 7 / 30

Surface Remeshing Based on Conformal Uniformization

Key Idea : Convert 3D meshing to 2D

1 Flatten a curved surface onto a planar domain using
conformal(angle-preserving) mappings;

2 Generate a high quality mesh on the planar domain;

3 Pull back the triangulation from the planar domain to the curved
surface.

A conformal mapping maps the planar Delaunay triangulations to the
geodesic Delaunay triangulations on the surface. The sampling density on
the plane can be adapted, such that the sampling on the surface normal
cycle is uniform. This produces high quality surface meshes.

Na Lei (Dalian University of Technology) Remeshing Based on Conformal Uniformization March 8th, 2023 7 / 30

Gu talk, IMR 2023

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.84

Discrete surface Ricci flow

Definition (Discrete Surface Ricci Flow)

Given a marked surface (S ,V) with a polyhedral metric d and a
triangulation T , suppose the target Gaussian curvature K̄ : V ! R is
given, then the Ricci flow is defined as

d�(vi , t)

dt
= K̄ (vi)� K (vi , t),

during the flow, T is updated to be Delaunay.

Definition (Discrete Ricci Energy)

The discrete Ricci energy is defined as:

E (�) :=

Z � nX

i=1

(K̄ (vi)� K (vi))d�i . (3)

The discrete surface Ricci flow is the gradient flow of the Ricci energy.
Na Lei (Dalian University of Technology) Remeshing Based on Conformal Uniformization March 8th, 2023 13 / 30

Gu talk, IMR 2023

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.85

Discrete Uniformization Theorem

Theorem (Discrete Surface Uniformization)

Given a polyhedral metric d on a closed marked surface (S ,V), and target

curvature K̄ : V ! (�1, 2⇡), such that K̄ satisfies the Gauss-Bonnet

conditon
P

K (v) = 2⇡�(S), there is a d̄ discrete conformal to d , and d̄

realized the curvature k̄ . d̄ is unique update to a scaling, and can be

obtained by the discrete surface Ricci flow.

The discrete uniformization theorem guarantees the existence and the
uniqueness of the solution to the discrete surface Ricci flow, which can be
obtained by optimizing the convex discrete surface Ricci energy.

Na Lei (Dalian University of Technology) Remeshing Based on Conformal Uniformization March 8th, 2023 15 / 30

Gu talk, IMR 2023

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.86

Experimental Results

Figure: Conformal parameterization and remesh result.

Na Lei (Dalian University of Technology) Remeshing Based on Conformal Uniformization March 8th, 2023 18 / 30

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.87

Experimental Results

Figure: remesh result.

Na Lei (Dalian University of Technology) Remeshing Based on Conformal Uniformization March 8th, 2023 19 / 30

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.88

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.89

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.90

© 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only.91

© 2020 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design
Systems, Inc. Accellera and SystemC are trademarks of Accellera Systems Initiative Inc. All Arm products are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All MIPI specifications are

registered trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks or trademarks of PCI-SIG. All other trademarks are the property of their respective owners.

http://www.cadence.com/go/trademarks

