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EDA (Electronic Design Automation) and EDA softwares

« EDA is a category of software tools for designing electronic systems such as
integrated circuits (ICs) and printed circuit boards (PCBs).

» Cadence develops software, hardware and solutions for the computing, chip, 5G
communications, automotive and aerospace industries.

Michael Green Asianometry: EDA Software, designing billions Cadence, Clarity
What is chip design? of circuits with code
https://magreen.medium.com https://www.youtube.com/watch?v=ihz2WY-E2C8
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Outline

Meshing in EDA

Delaunay-based 2d/3d mesh generation

Surface mesh generation

Remarks and outlook
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Delaunay-based 2d/3d mesh generation
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Delaunay and Voronoi meshes

Nice geometric properties: nearest neighbors, MaxMin angle, in relation to
convex polytope theory

Dual of Voronoi diagrams (crucial property in FEM and FVM methods)
High mesh quality (good angles) and regularity.

Fast algorithms have been developed

Georgy F. Voronoy (1868-1908)

Robust (open source) softwares: Triangle, Detri2, TetGen

Boris N. Delaunay (1890-1980)
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Anisotropic Delaunay and Voronoi meshes

Z

Optimal Voronoi tessellation, Budninskiy et al, TOG 2016

An anisotropic Delaunay mesh wrt a metric field (Only valid for convex functions)

Labelle & Shewchuk (not always exists)

Anisotropic Delaunay surface mesh
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A Delaunay-based Mesh Generation Framework (2d/3d)

Input: a set of points, line segments, facets
1. Delaunay triangulation: create the DT from input points.

2. Boundary Recovery: insert all input segments and facets to
create a constrained (Delaunay) triangulation (CDT).

3. Mesh refinement: insert new points into the CDT according to
(user-defined) element shape and size requirements.

4. Mesh optimisation: improve the mesh quality by vertex
smoothing, edge/face swaps, and vertex insertions/deletions

~
Input
) ¢
Delaunay triangulation
Boundary recovery
) I
~
Mesh refinement
-
\ 4
~
Mesh optimisation
-
(
Output mesh
\

— S
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Delaunay triangulations

N e

r=x T+ Y “— a lower face
@%
/ ;

Dual of Voronoi diagrams empty circumsphere property projections of convex hulls

Figure from J. Pellerin’s thesis



Lawson’s Flip Algorithm [1972, 1977]

o Let S = {p1,p2,...,pn} be a finite set of points in R?,
@ Compute an initial triangulation 7 of a point set S.
while 3 a locally non-Delaunay edge ab € T

flip ab;
end while




Correctness and runtime

s flip algorithm

left) in 3d into a convex one

Y

Top: Bottom: The lifted view of the Lawson

FI1GURE 17.

(

which transforms a non-convex surface

(right).
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Flip graph

2.4. The (undirected) flip graph. One can use flips to traverse the set of all triangu-
lations of a point set S. We can form a flip-graph G of S. Each triangulation is a node
of G, and each edge of G between two nodes u and v means there is a flip that changes
the triangulation u to v. Figure 19 shows an example. The termination of Lawson’s flip
algorithm implies that the flip-graph for any point set in the plane is connected, i.e., one
can go from any triangulation of S to any other triangulation.

FiGURE 19. The flip graph of a set of the vertex set of a convex 6-gon.
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Incremental flip algorithm

Algorithm: IncrementalFlip(S = {p1,...,Pn})
Input: a sequence S of n points in R?;
Output: the Delaunay triangulation D of S;
1 initialize Dy with only one larger triangle tyxyy;
2 fori=1tondo

3 find the triangle 7 € D;_; containing p;;

4 insert p; by a 1-3 flip; SEEPIONEES

5 initial the stack L with link edges of p;; the star of p;
6

7

8

LawsonFlip(L);
endfor
remove all triangles containing x, y, and z from D,;

FIGURE 22. The incremental-flip algorithm.

the link of p;

F1GURE 23. Recovery Delaunay property by the Lawson’s flip algorithm.
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Flips in any dimension

o Radon’s partitions[Radon 1921]: Any set of d + 2 points in RY can be partitioned
into two disjoint sets whose convex hulls intersect.

=470

1-to-4 and 4-to-1 2-to-3 and 3-to-2

2-to-2 flip

2d 3d
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Flips in 3d

Lemma [Joe 1989]: There exists a 3d non-Delaunay triangulation which

contains a cycle of non-locally Delaunay and unflippable faces.

TABLE 1
Vertex coordinates.

Index x y z
1 0.054 0.099 0.993
2 0.066 0.756 0.910
3 0.076 0.578 0.408
4 0.081 0.036 0.954
5 0.082 0.600 0.726
6 0.085 0.327 0.731
7 0.123 0.666 0.842
8 0.161 0.303 0.975
TABLE 2

vertex indices.

Pseudo-locally optimal non-Delaunay triangulation (left) and
Delaunay triangulation (right). A tetrahedron is described by its four

[N]

1 2

1 2

1 2

1 2

1 3

1 3

1 4

2 3

a locally Delaunay face ;4
(shaded) face (a,b,c) is unflippable s
¢
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Joe’s example [Joe 1989]
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Incremental flip in 3d

o Let S = {p1,p2,...,pn} be a finite set of points in R*>. And we assume S is in
general position.

o Let [w,x,y,z| be a sufficiently large tetrahedron that contains all points of S.

1 Let Dy consists of only the tetrahedron [w, x,y, z];

2 fori=1tondo

3 find [p, q,r,s] € D; that contains p;;

4 add p; with a 1-to-4 flip;

5 while 3 triangle [a, b, c] not locally Delaunay;
6 flip [a, b, c];

7 endwhile

8 endfor

Edelsbrunner, H. & Shah, N. R. Incremental topological flipping works for regular
triangulations, Algorithmica, 1996, 15, 223-241
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Implementation choices

o Let S = {p1,p2,...,pn} be a finite set of points in R*>. And we assume S is in
general position. < sort the input points by BRIO + Hilbert order
o Let [w, x,y, z] be a sufficiently large tetrahedron that contains all points of S.

1

O ~NOO1T P~ WD

Let Dy consists of only the tetrahedron [w, x,y,z]; «—— noneed of this step when using
for i = 1 to n do an infinite vertex
find [p, q,r,s] € D; that contains p;;

; a 1-to-4 flip;
while 3 triangle [a, b, c] not locally Delaunay; ) « Use Bowyer-Watson
ip [a, b, c]; cavity algorithm
endwhile
endfor Use filtered robust predicates to

do point orientation3d and
point-in-sphere tests

AN A N (A N
B0 WL KB 558

Célestin Marot, Jeanne Pellerin, and Jean-Francois Remacle. One ma-
chine, one minute, three billion tetrahedra. International Journal for Nu-
merical Methods in Engineering, 117(9):967-990, 2019.
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Flips in 3d

Lemma [Joe 1989]: There exists a 3d non-Delaunay triangulation which

contains a cycle of non-locally Delaunay and unflippable faces.

TABLE 1
Vertex coordinates.

Index x y z
1 0.054 0.099 0.993
2 0.066 0.756 0.910
3 0.076 0.578 0.408
4 0.081 0.036 0.954
5 0.082 0.600 0.726
6 0.085 0.327 0.731
€ d 7 0.123 0.666 0.842
ﬂf\ % 8 0.161 0.303 0.975
Open problem: the connectedness of the general flip graphs in 3d and 4d.
e < Delaunay friangulafion (Fight). A tefranearon 1S descrioea oy nsjour
C gl deb Lo vertex indices.
1 2 3 5 1 2 3 5
1 2 4 6 1 2 5 6
1 2 4 7 1 2 6 8
1 2 5 6 1 3 4 6
1 2 7 8 1 3 5 6
1 3 4 6 1 4 6 8
1 3 5 6 2 3 -5 7
1 4 7 8 2 5 6 8
e 2 3 5 7 2 5 7 8
2 4 5 6 3 4 6 8
a locally Delaunay face > 4 s 7|3 s 6 7
. . 3 4 6 8 3 6 7 8
(shaded) face (a,b,c) is unflippable s s o6 156 0 s
3 6 7
4 5 6 8
4 5 7 8
5 6 7 8

Joe’s example [Joe 1989]
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Weighted Delaunay Triangulations
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Weighted Delaunay triangulations

Orthogonal Orthogonal
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Non-weighted Delaunay Triangulations

@ A subdivision of a point set S is non-regular if it is not a regular subdivision of S.

@ There are many non-regular subdivisions. For example, most triangulations of cyclic
polytopes are non-regular [Rambau 1996].

A non-regular triangulation
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The acyclic theorem [Edelsbrunner 1990]

@ The in_front/behind relation: Let x be a point and P and Q be two disjoint convex
objects in R?. We say that P is in front of Q with respect to x if there is a ray L
starting at x that first passes through P and then through Q.

@ Theorem [Edelsbrunner 1990]: The in_front/behind relation defined for the faces
of any regular subdivision and for fixed viewpoint x in R is acyclic.

a view point

Fi < Fy < F3 < F} t1,4,6 <1356 <1245 <1146
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The Flip Graph of Regular Triangulations

o Theorem|Gelfand-Kapranov-Zelevinskii 1990]: For every set A of n points in R,

there is a polytope X (A) of dimension n — d — 1 with the following correspondence:

regular triangulation of A <+— vertices of X(A)
flips between them <+— edges of X(A)
poset of regular triangulation of A <+— poset of faces of £(A)

This is called the secondary polytope of A.

@ Corollary: The flip graph of regular triangulations is connected.

N
7 N\
NEANVANZ A
TSR
N AN AN A 2 RN/}
A W i
AU
~N
N

Figure 6.7: The height of a section defines a

poset on all triangulations of C(6, 1).
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Boundary Recovery

How to recover the edge AB? How to recover the rectangular face
images from [Owen 1998]
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Planar straight-line graphs (PSLGs)

2.1. Planar straight-line graphs. Consider now the input is a finite set of points
S C R?, together with a finite set of line segments, L, each connecting two points in
S. We require any two line segments of L be disjointed or met at most in a common
endpoint. We call G = (5, L) a planar straight-line graph (PSLG), see Figure 2.1 Left
for an example.

A PSLG (S, L)
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A constrained Delaunay triangulation (CDT) is a triangulation whose triangles are
all constrained Delaunay [Lee & Lin 1986].

a constrained Delaunay
triangulation
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The lifting transformation of CDTs

- ®
27 © 2020 Cadence Design Systems, Inc. Cadence confidential. Internal use only. c a d e n c e



Theorem 1.1 (Two-Ear theorem [8]). Every simple polygon with more than 3 vertices
has at least two ears.

a diagonal

A simple polygon with only 2 ears.

The Ear-Clipping algorithm to triangulate a simple polygon.

1 while P contains more than 3 vertices do
2 Find an ear {a;_1,a;,a;4+1} of P;

3 Output a triangle {a;_1, a;, a;j4+1};

4 Update P := P\ conv{a;—1,a;,a;+1}};
5 endwhile

From this algorithm, it is easy to see that every triangulation of a simple polygon
with n vertices has exactly n — 2 triangles and n — 3 diagonals. These counts can also
be derived from the Euler’s formula (we leave it as an exercise).

the worst case of finding one ear takes O(n?) time.
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Algorithm: IncrementalCDT(S, L)
Input: A PSLG (S,L), k := |LJ;
Output: the CDT T of (S, L);

1
2
3

4
5)
6
7
8

construct an initial CDT 7; of S;
for =1 to k do
if s, € L and s; g T.—1 then
RecoverEdge(s;, Ti—1); <

Let E be the set of new edges in 7T;_1;
ConstrainedLawsonFlip(E);
endif
endfor

(6)

FIGURE 15. Recover an edge by flips. (Figures from S. Owen).
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Piecewise linear complexes

m A 3D piecewise linear complex (PLC) [Miller et al’96] is a collection 2" of
vertices, edges, polygons, and polyhedra, collectively called cells, such that

(1) the boundary of each cell in 2" is also cells in 2Z"; and
(2) if f,ge Z and fNg#£0,then fNgis a union of cellsin 2.

— figure by J. Shewchuk
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Some polyhedra need Steiner points (additional points)

@ A simple polyhedron P may not have a tetrahedralization without using additional
points (Steiner points")) [Lennes 1911, Schénhardt 1928].

@ The problem of deciding whether P can be tetrahedralized without Steiner points is
NP-complete [Rupper & Seidel 1992].

The Schénhardt Polyhedron [1928]

(1) Jakob Steiner (1796 — 1863), a Switzerland native and a geometer from Berlin.
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@ We generalize the definition of 2d CDT of [Lee & Lin 1986] into 3D.

@ A tetrahedron is constrained Delaunay if: (i) it does not intersect any constraint in

its interior; and (ii) its circumsphere contains no vertex that is visible from its
interior.

@ A tetrahedralization 7 of a PLC X is a constrained Delaunay tetrahedralization
(CDT) if every tetrajedron in T is constrained Delaunay [Shewchuk 1998].

a constrained Delaunay a constrained Delaunay
tetrahedron tetrahedralization (CDT)
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@ An edge e in a PLC X is strongly Delaunay if there exists a circumball of e such
that no other vertex of X lies inside or on the boundary of the ball.

@ Theorem [Shewchuk 1998]. If every edge of the PLC is strongly Delaunay, then it
has a CDT.

@ A Steiner CDT of X is a CDT of X US, where S is a set of Steiner points.

Courtesy of J. Shewchuk
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A CDT algorithm

Given a 3D PLC X, a Steiner CDT of X is generated
in three steps:

(1) Initialization: Creating a Delaunay
tetrahedralization of the vertices of X’;

(2) Segment insertion: Splitting all non-Delaunay
segments of X by inserting Steiner points, until
all subsegments are Delaunay;

(3) Pfol;gon insertion: Generating the Steiner CDT An input PLC X (1) Initialization
of X.

(2) Segment insertion

[Si & Gartner 2005] [Shewchuk 2003] [Si & Shewchuk 2014]
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@ In many applications, a pre-discretized surface mesh is used as input, and it is
required that this surface mesh be exactly preserved in the generated tetrahedral
mesh, i.e., no subdivision of the surface mesh is allowed.

courtesy of acelab utexas
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Three classical methods

(1) Use edge/face swaps together with interior Steiner points insertion [George, Hecht,
& Saltel 1991] (in TetMesh-GHS3D).

(2) Insert Steiner points at where the boundaries and 7T intersect, delete vertices or
relocate them from the boundaries afterwards [Weatherill & Hassan 1994].

(3) Combine methods (1) and (2) [George, Borouchaki, & Saltel 2003] (in
TetMesh-GHS3D).

Edge~Face Intersection Type (2-3)
A‘ and Face—Edge Intersection Type (3-2)

Face~Face Intersection Type (3-3)
Node - Edge Intersection Type (1-2)
) ot SN

,A
R Single Node Intersection
Node~Face Intersection Type (1-3)
I and Face—Node Intersection Type (3-1) A‘

“ Edge— Edge Intersection Type (2-2) Single Edge Intersecti tion
Figure 5. Type: es

Fig. 11. Step 0, steps 1, 2, 3, step 4, steps 5, 6, steps 7, 8. and step 9. hedron intersections for missing surface edgg

(1) [George, Hecht, and Saltel 1991] | (2) [Weatherill and Hassan 1994|
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Recover edge (face) by flips

e Edge (and face) recovery by flips:

> Maintain a list L of all faces that are intersecting an edge (or a face);
» Remove each face in L by either a 2-to-3 flip or by the edge removal algorithm;
> Stop either (i) L is empty, or (ii) no face in L can be removed;
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The general n-m-flip

b
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0 | a, b, po, p1 0 | [a, b, po, p1l
1| la b, pr, po] I [ [a, b, py, ps]
2 | la, b, p2, p3] 2 | la, b, p2, p3l
3 | [a, b, p3, p4l 3 | @ b, p3, pal
Po 4 [ [a. b, ps. ps] Po T [a b, ps. ps)
5 | la, b, ps, pol "' 5 | [a, b, ps, pol
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;0
P1 )4 ! p b
R g 4
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e 3
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ps 0 | [a, b, po, p2l
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0 a b
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Where to insert interior Steiner points?

B2

Figure: The (open) valid domain for placing Steiner points inside the Schénhardt polyhedron. A side view
(left) and a top view (right) are shown.
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Where to insert interior Steiner points (cont'd)?

A2

C2

A1

Fig. 9 The Schonhardt polyhedron with a rotation angle of ©¥ = 60°. The edges A; B2 and
A2C1, A1 B2 and B1(C2, and A3>C1 and B1C> are coplanar since the dihedral angles between
some faces is 0°. A side view (left) and a top view (right) are shown.
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Add interior Steiner points

Now the polyhedron o,,, n = 6 + k, where k > 0, is constructed by choosing
the boundary faces listed in Table.

(1) | (a,c,d),(b,c,d)
(2) (a7c7g0)a (b,C,g()), (a7d7gk+1)7 (bvdag/ﬁ—l)
(3) (aagi7gi—|—1)7(bagiagi-i—l)’Wherei — 07'°'7k

9
T k+1 g1 g2 g4
90 93
d
’ c d a b c d g0 g1 g2 g3
x | -1.294  4.830 4.830 -3.536  4.253  -0.301 3.117  -2.183
Y 10 0 10 0 6.532 9.760 2.999 8.657
a, b z 4.830 1.294  -1.294 3.536  -2.426 0 -2.571 0.646
g g5 g6 g7
g1 S - .- q2 x 1.874 -3.330 0.163 -4.051
S o= I Yy 1.002 6.864 -0.105  3.184
- __—_’_' RN - -~ oy . z | -1.808 1.350 -0.366 2.242
~ . Table 4 A choice of the coordinates of the vertices of a o12. The geometry of this polyhedron
is shown in Figure 14. With these coordinates, this polyhedron needs at least 4 Steiner points
c to be decomposed.

Theorem 4 Given n € N>g, one can construct an a 3d polyhedron o, with n
vertices which has the property that one needs exactly (”T_ﬂ interior Steiner

points to decompose 1it.
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Add interior Steiner points
7 e

(flipping upper edges)  (flipping lower edges)

(flipping left edges)  (flipping right edges)
I=0

[
Figure: Left: A saddle surface (a hyperbolic paraboloid). Right: The Chazelle polyhedron with three
notches, i.e., N = 2, on the top and the bottom faces, respectively.
ﬂO B 1 cee /))'\
ay SO.N_ |S1LN SNN o by
~—— —e
) e—— —e
50,1 S1,1 SN.1
a) e——— —e by
50,0 [S10 SN0
[e%i} aq s anN

Figure: The interior Steiner points, {s; ; | 4,7 = 0, ..., N}, are placed directly at the intersections of
the two set of lines in the xy-plane and all lie on the saddle surface z = zy + w, where 0 < w < €.

Theorem The reduced Chazelle polyhedron ®%; _ needs (N + 1)? interior
Steiner points as € — 0.
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a Steiner point

Input: 2760 points, 5560 triangles
Output: added 2 Steiner points

Input: 448 points, 1120 triangles
Output: added 8 Steiner points
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Mesh Refinement
How Meshes Affect Solution

Skinny elements cause problems.

<G Small angles cause poor conditioning.

_—<=~__ Large angles cause discretization error
& big errors in interpolated derivatives.

For tetrahedra, this applies to the dihedral angles.

(Not the plane angles!)

The number of elements matters.

Fewer elements =» faster solution.

More elements » more accurate solution.

J. Shewchuk, IMR, 2005
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Steiner point generation

@ Advancing-front: [Lo 1991, Lohner 1996, Marcum & Weatherill 1995];
@ Sphere packing: [Shimada & Gossard 1995, Miller et al 1996];

@ Octree-based: [Mitchell & Vavasis 2000];

@ Longest edge subdivision: [Rivara 1997];

@ Delaunay Refinement: [Chew 1989, Ruppert 1995, Shewchuk 1998|;
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Delaunay Refinement

[Alert: here comes the MAIN IDEA behind all Delaunay refinement algorithm:

/

Kill each skinny triangle by inserting vertex at circumcenter.
(Bowyer—Watson algorithm.)

All new edges are at least as long as circumradius of 7
(because v is at center of empty circumcircle).

J. Shewchuk, IMR, 2005
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What if a circumcenter is outside the domain?

Then a boundary segment is encroached. Split it.
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Steiner points insertion rules

@ Rule 1: Split a segment if it is encroached.

@ Rule 2: Split a subface if it is encroached. However, if the new vertex would
encroaches upon a segment, reject the vertex. Split the encroached segment(s)
instead.

@ Rule 3: Split a badly-shaped tetrahedron. However, if the new vertex would
encroached upon a subface or a segment, reject the vertex. Split the encroached
subface(s) or segment(s) instead.

Rule 1 Rule 3
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Delaunay refinement

DELAUNAYREFINEMENT (X, po)

// X is a PLC; po is a radius-edge ratio bound.

1 Initialize a set V of the vertices of X;

Initialize a Delaunay tetrahedralization D of V/;

repeat:
Create a new point by rule i, i € {1,2,3};
Add v to V/, update D of V;

until {no new point can be generated};

return D of V;

~NOoO ok~ DN

Rupper and Shewhcuk’s Algorithm [Ruppert 1995, Shewchuk 1998]
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@ Observation: small angles are “edge length reducers”.

A subsegment is spilit.
New vertex encroaches upon
another subsegment.

3
Another vertex is inserted,
creating a very short edge.
Oops!
!

Skinny tetrahedra get split.
Small edge lengths propagate.
Subsegment split again!
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Fixing the Algorithm

e “Groom” input by splitting segments with
augmenting points.

e All segments at same length?

Sangria seminar, 03.10.03 — p.9/18
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Constrained Delaunay refinement

= e
Input test-64-6 Tet mesh, 3,733 vertices
161 vertices, 70 polygons (cut along the Z-axis)

—
refined “fan blades” remaining skinny tetrahedra
(radius-edge ratios > 2)

e S S =

Tet mesh, 23,727 tets
(cut along the Y-axis)

2500

plane angles  mm—

2000

1500

1000

500

0
0 20 40 60 80 100 120 140 160 180

plane angles

Constrained Delaunay Refinement [Shewchuk & Si 2014]
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N

X1,--~,XN,D1,-.,DN; D, ” l” p( )

Two necessary conditions for the minimizer of (1)[Lloyd 1982]
1. D; is the Voronoi region V; of x;.
2. x; is the centroid of the V;, namely

Iy xol00x
o fvi p(x)dx -

Therefore the minizer is called Centroid Voronoi Tessellation(CVT).

CVT and its application: Du, Faber and Gunzhurger 1999, Du, Gunzbhurger and Ju 2003,
Du and Wang 2002, 2003, Huang, Qing and Wang 2008.

Duality between
ODT and CVT

Inscribe approximation vs. Circumscribe approximation

ODT Smoothing

Let ¢; be the center of the circum-
sphere of 7;. Then the optimal loca-
tion x* can be written as

Q; )

*

® Chen. Mesh smoothing schemes based on optimal Delaunay triangulations. 13th International
Meshing Roundtable. 109-120, 2004.

SIGGRAPH 2005 Courses. 2005.

From Alliez et al ACM Transactions on Graphics. 2005 and
Tournois et al. ACM Trans. Graph.2009.

Slides by Long Chen, UCI
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In 1998, Tim Baker (1948-2006) wrote:

In three dimensions the theory is far from developed. The main difficulties are the
following: (1) there exist configurations of boundary points and faces for which no
conforming grid of tetrahedra exists unless extra points are inserted, (2) although 3D
analogues of diagonal swapping exist, it does not appear possible to convert an
arbitrary triangulation into the corresponding Delaunay triangulations, (3) the presence
of slivers, formed by four coplanar points, can arise and indeed will often arise when
efforts are made to create a constrained Delaunay triangulation that conforms with a

prescribed boundary.

The Schonhardt flip 2-to-3 Sliver
polyhedron 3-to-2
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Monotone sequences of flips and triangulations

Sleator, Thurston, and Tarjan, Rotation distance, triangulations, and hyperbolic geometry, J. Amer.
Math. Soc. 1988
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Transforming triangulations via flips

The furtherest point Voronoi Diagram

/ - V) ={xeR’ |x—p|>|x—dl, Vq e S}
> 1

farthest point Delaunay triangulation
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The directed flip graph

2d_6_points.node
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The directed flip graph
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The directed flip graph (continued)

N the upper extreme node
/;l;;;iffé%ésfii:j\\\
an upper
non-extreme
node
A A A A
: : : : w ‘
\ .

an lower
non-extreme

*/ ~ Ny Y \*/ \f/ node

the lower extreme node

Figure 27: Left: Assume w is neither convex nor concave. An example of a
poset of triangulations of (A,w). Extreme nodes, upper non-extreme nodes,
and lower non-extreme nodes are shown. Right: The lower and upper interior
vertices of a point set (A, w).
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B-reps (Boundary representations)

surfaces: closed
set of curves

curves: bounded

vertices: x,5.z
location

by two vertices

volumes: closed
set of surfaces

Manifold Geometry:
Each volume maintains its

Surface 11 own set of unique surfaces

| Surface 8 I-—l-Surface 9 | | Surface 10-|—-| Surface 11 |

Volume 1

| Surface 1 |——|-Suﬂeee—2-|-—-|-5nrface 3 |—|—éurface J—|—| Surfaee—S-I—

| Surface 7 |

Steve Owen, 14th IMR, short course

surfaces: closed
set of curves

curves: bounded

vertices: x,),z by two yertic

location " |
coedges: orientation
of curve w.r.t. loop

coface:

oriented
surface w.r.t.
shell

—

of curves on
surface

shell:

oriented set o

surfaces

cor{:prising a body: collection
volume volumes: closed of volumes

set of surfaces

Non-Manifold
Geometry: Volumes share
matching surfaces

rface 9 | |Surface 1
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Parametric Space Mesh Generation

except distances and angles

9

*Use essentially the same isotropic methods for 2D mesh generation

are now measured with respect to the local metric tensor M(X).

98)

9

*Can use Delaunay (George, 99) or Advancing Front Methods (Tristano

Steve Owen, 14th IMR, short course

®
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Metric (differential geometry)

A Riemannian metric g on a smooth manifold M is a smoothly
chosen inner product g, : TyM x T,M — R on each of the tangent
spaces T, M of M satisfying:

(1) g(u,v) =g(v,u),Vu,v € TM;

(2) g(u,v) >0,Vv € T,M; and

(3) g(v,v) =0 <= v=0.

A special case, when M = R, the real d-dim Euclidean space, g is
a d X d symmetric positive definite matrix.

A metric allows defining distances, areas and angles on the manifold
M. The length of a vector v € T, M:

vl = Vg(v,v) = v/vTgv. in matrix form

)

The angle 6 between two vectors u,v € TyM is:

cos(f) = g(u, v)

[[ul[[Iv]]
Let v be a curve from a to b in M, the curve length s
b .
Bernhard Riemann (1826-1866)
k) = [ VI, ¢ fabl
a
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e Ellipses packing Li Teng Ungor (99) , Yamakawa Shimada (03)

e Anisotropic Delaunay refinement Borouchaki George et al. (97)
Frey Alauzet (2004), Dobrzynsk Frey (08)

e Continuous mesh Loseille Alauzet (09)

e Anisotropic mesh optimization

Pliant method Bossen Heckbert (96)

Li Shepard Beall (2005)

e Anisotropic Voronoi diagrams, Labelle Shewchuck (03), Boissonnat et al(08).
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Geometry approximation

Schwarz lantern

—_—
===\
e ]
/ e \\ \]
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T i ‘\ /
& o N\, /
§ \( N “ /
\ N — g [
\ \\\ s {
\\\ e {
\ \\ T {
\ \\ r« /’,4
\ \t l / /)
< \ g {
§ N ///,
\ \ \. S //
\\\ g {
\ N — /
\\\ e /!
\ \\\_ e //f
\\ _l

M=20, N=20

=

T
N
o
<

T
—_
o

Figure: Schwartz's lantern: an example of Hausdorff convergence only.
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Example: wing 33

Xyz

uv
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Example: wing 33
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: wing 33

Example
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Example: wing 33
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Example: wing 33

surface mesh from anisotropic Riemann + curvature metric
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Anisotropic Delaunay refinement
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Non uniform metric

Delaunay triangulation
is not globally defined.
No “empty circum-ellipse”

» property.

Q\VK(/)/)/) 1/7 /

An anisotropic Voronoi diagram

F. Labelle and J. Shewchuk, 2016
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Labelle and Shewchuck approach

Let D C RY be a domain
with a metric field defined on D :
Vpe D — M,.

do(x.y) = 1/ (x = y) Mp(x — y)

Anisotropic Voronoi diagram
P a set of sites in D
Vp € P, Voronoi cell V(p)

V(p) — {X = Rd : dp(pax) < dQ(q7X)7
Vq € P,q # p}

Cells are not connected.

The dual is not a triangulation.
Labelle and Shewchuck approach :
refine the set of sites until

the dual is a triangulation.

Works only in 2D.
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Locally uniform Anisotropic Delaunay Mesh (M. Yvinec, INRIA)

Build a mesh such that:
the star of each vertex is Delaunay ///\

N

|

and well shaped \

wrt the metric at that vertex.

3
\
\
\
\
]
]
I
]

V' set of vertices, v € V:

M, metric at v L \

Del, (V) Delaunay triangulation of V

computed with metric M,
S,: the star of v in Del, (V)

Overview of the meshing algorithm
» Maintain the set of stars S(V) ={S5, : v € V}

» Refine V until stars are consistent

cadence



Locally uniform Anisotropic Delaunay Mesh (M. Yvinec, INRIA)

Inconsistency : some simplex 7 with vertices {v,w,...}
appears in star S, but not in star S,,.
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Anisotropic Delaunay Refinement (M. Yvinec, INRIA)

V' current set of sites, S(V) ={S, : v € V} the star set
Domain €2: each star S, is restricted to 2

ie. S, ={r €Del,(V):verTand ¢ (1) € Q}
Apply following refinement rules with priority order:

1. Sizing field - Distorsion
While 37 € S, s.t. r,(7) > alf(c,(7)), refine 7

2. Radius-edge ratio
While 37 € S, s.t. p,(7) > po, refine 7

3. Slivers
While 9 a sliver 7 € S, (p,(7) < po, 0,(7) < 0g), refine 7

4. Inconsistencies
While 3 an inconsistent simplex 7 € S, refine 7
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Anisotropic mesh improving
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X. Fu, Y. Liu, J. Snyder, B. Guo, Anisotropic Simplical Meshing Using Local Covex Functions. ACM
Transactions on Graphics, Volume 33, Issue No. 6, Article Number 182, pp 1—11, 2014

M. Budniskiy, B. Liu, F. De Goes, Y. Tong, P. Alliez, M. Desbrun, Optimal Voronoi Tessellations with Hessian-
based Anisotropy. ACM Transactions on Graphics, Volume 35, Issue No. 6, Artical No. 242, pp 1—12, 2016
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Joint work with Prof. Lei and Prof. Gu, IMR 2023
Surface Remeshing Based on Conformal Uniformization

Key Idea : Convert 3D meshing to 2D

© Flatten a curved surface onto a planar domain using
conformal(angle-preserving) mappings;

© Generate a high quality mesh on the planar domain;

© Pull back the triangulation from the planar domain to the curved
surface. ]

A conformal mapping maps the planar Delaunay triangulations to the
geodesic Delaunay triangulations on the surface. The sampling density on
the plane can be adapted, such that the sampling on the surface normal
cycle is uniform. This produces high quality surface meshes.

Gu talk, IMR 2023
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Discrete surface Ricci flow

Definition (Discrete Surface Ricci Flow)

Given a marked surface (S, V) with a polyhedral metric d and a
triangulation T, suppose the target Gaussian curvature K : V — R is
given, then the Ricci flow is defined as

d)\(v,-, t)

S = R(v) — K(vit).

during the flow, T is updated to be Delaunay.

Gu talk, IMR 2023
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Theorem (Discrete Surface Uniformization)

Given a polyhedral metric d on a closed marked surface (S, V), and target
curvature K : V — (—o00,27), such that K satisfies the Gauss-Bonnet
conditon 3" K(v) = 2nx(S), there is a d discrete conformal to d, and d
realized the curvature k. d is unique update to a scaling, and can be
obtained by the discrete surface Ricci flow.

The discrete uniformization theorem guarantees the existence and the
uniqueness of the solution to the discrete surface Ricci flow, which can be
obtained by optimizing the convex discrete surface Ricci energy.

Gu talk, IMR 2023
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Figure: Conformal parameterization and remesh result.
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Figure: remesh result.
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Number of vertices: 294412
Number of segments: 0
Number of facets: 587900
Number of tetrahedra: 0
Min facet tag: 1

Max facet tag: 1
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