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Motivation: Wind Tunnel vs Simulation

High-order simulation
(Z) Wang AIAA’23)

Wind tunnel data
(4th HLPW)
(NASA AIAA)
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Unstructured high-order methods
* Geometric flexibility: using unstructured meshes
°* More accuracy: with same #DOFs, less dissipation and dispersion

They require curved high-order meshes
* Geometric error: straight elements hamper simulation accuracy



Motivation: Curved Meshes for Flow Simulation

Large-scale curved meshes in complex virtual geometries
° Approximate virtual CAD B-rep: using curved elements
* Mesh features: small elements & size gradation, boundary layer...

°* Mesh quality: facilitates solving the simulation problems



Mesh Curving Methods

Direct methods: Create curved mesh from scratch
¢ Delaunay (Feng, Alliez, Busé, Delingette, Desbrun ToG’18)
* Advancing front (Mohammadi, Shontz IMR’21)

Indirect methods: Linear mesh generation + curving step

* PDE-based

® Linear / non-linear elasticity
(Persson, Peraire), (Xie, Poya, Sevilla, Hassan), (Turner, Moxey, Sherwin, Peird)

®* Winslow (Fortunato, Persson), ...

* Optimization-based

®* Mesh distortion / quality (Tomov, Mittal, Kolev), (Karman),
(Gargallo-Peird, Ruiz-Gironés, Sarrate, Roca), (Feuillet, Loseille, Alauzet)...

®* Nodal displacement (Toulorge, Johnen, Lambrechts, Remacle), ...
® Other quantities (Stees, Shontz), ...



° Curving solution
* Complex geometry in parallel
* Large-scale distributed curving

°* High-Lift Prediction Workshop



Curving Solution

(Ruiz-Gironés, Gargallo, Sarrate, Roca IMR’17 & CAD’19)
(Ruiz-Gironés, Roca IMR’18, IMR’19 & CAD’22)

* Constrained optimization problem
°* Continuous penalty



Our Formulation : Constrained Optimization
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constrained to:
To = QD(TCb)

gp(To) = Z mq, (i) N;

(Knupp SIAM J. Sci. Comput.‘01)
(Roca, Gargallo, Sarrate IMR’12)
(Gargallo, Roca, Peraire, Sarrate INME’15)

(Ruiz-Gironés, Roca, Sarrate CAD’16)
(Ruiz-Gironés, Gargallo, Sarrate, Roca IMR’17 & CAD’19)
(Ruiz-Gironés, Sarrate, Roca IMR’16)

(Ruiz-Gironés, Sarrate, Roca IMR’15 & JCP’21)

(Ruiz-Gironés, Roca IMR’18, IMR’19, CAD’22, AIAA’22)



Our Solution: Continuous Penalty Method

(Ruiz-Gironés, Roca IMR’18, IMR’19 & CAD’22)
Penalty method: Optimize several unconstrained problems

Eu(ﬁb) — HMCbH?zI + pu||Tep — QD(TCb)H%QI

E,:H Q) —R
gp : L2(00) — L2(090)

Non-linear problem: volume & boundary

Fix-point iterative solver: Newton + backtracking line-search

, g} = gp(To") N

Compute target

configuration \ qbk—l—l _ argmin Eu(qugl]g) /
¢

Optimize mesh



Sample meshes

Example
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Features

* Constrained optimization problem:
Minimize mesh distortion while approximating the virtual model

°* Mesh floats:
Mesh approximates the geometry

* Mesh is always valid:
No need to introduce untangling

* Virtual geometry aware:
Elements span several entities

* Tight tolerances:
Fully converged meshes avoid element oscillations

°* Newton’s method with backtracking line-search:
Ensures quadratic convergence near solution
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Complex geometry in parallel

(Ruiz-Gironés, Roca IMR’18, IMR’19 & CAD’22)
(Ruiz-Gironés, Roca AlIAA’22)

°* Virtual model
* Point projection
°* Parallel distribution of input & output

12



Virtual Model

* Virtually join surfaces: Simulation intent
°* Decouple CAD & mesh topologies: one group for fuselage, wings, ...

* Surfaces: From 415 original surfaces to 215 virtual surfaces

Virtual surfaces: top view Virtual surfaces: bottom view
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Point Projection onto Virtual Models

* Projection onto virtual surface:
(Ruiz-Gironés, Roca IMR’18, IMR’19 & CAD’22)

® Loop over the geometric surfaces

[Ts(x) = argmin |[x —y|
yeS

* Projection onto virtual curve: Dealing with surface gaps
(Ruiz-Gironés, Roca AIAA’22)

® Project the node in-between the surface gap

Me(x) = 5 (M, (s, () + s, (15, ()
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Parallel Distribution of input & output

° Input data:
®* Marked linear mesh

® Virtual CAD model

* Linear & high-order meshes:
® Each processor owns a set of elements and nodes

® Each processor projects his boundary nodes

* Virtual model:
® Each processor has a copy of the geometry

® Easy to distribute, just read the CAD file
® Processors have enough memory for this approach
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Large-scale distributed curving

(Ruiz-Gironés, Roca IMR’19 & CAD’22)

°* Reduce computational time
°* Reduce memory footprint
°* Reduce energy consumption
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Lagrange Multiplier Approximation

° In penalty method: for u large enough, Lagrange multiplier is like

A~ —2u(T¢p —gp(ToP))

* Function over the mesh boundary:
®* When converging, doubling u halves the constraint values

* We use this to improve the solver:
® Given a target constraint norm, which u we need?
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p-Continuation: Less DOF’s & Sparser Matrices

Idea: Use a lower degree solution as an initial approximation

Implementation:
®* Increase polynomial degree when boundary constraint is “good enough”

ae? <Pt &P = ||T¢P — gD (T'®")llgpm,

* Approximate next penalty parameter using constraint norm

ITP? — gp(T'P?) o,

p+1 _ P
[T¢7 T — gp(Td )| o

L4
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p-continuation: Falcon aircraft

Mesh: Degree 4, 4M elements, boundary layer stretching 1:400
Optimization: 2400 cores, RASDD(1) - SSOR(2)

106 104 102
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p-continuation: Falcon aircraft

Mesh: Degree 4, 4M elements, boundary layer stretching 1:400
Optimization: 2400 cores, RASDD(1) - SSOR(2)

Penalty
estimation
No p-continuation p-continuation
"o p=4 10”6 p=
5107 ] 107
100 100
< 107, <107,
3“0—8 = 108
=10, = 10°
J - X 10—10 | | | |
012 3 456 7 2 4 6 8
1teration 1teration
Early
termination
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p-continuation: Falcon aircraft

Mesh: Degree 4, 4M elements, boundary layer stretching 1:400
Optimization: 2400 cores, RASDD(1) - SSOR(2)
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p-continuation technique allows:

0

p=3

®* 4 times reduction in time

* 8 times reduction in energy

optimization process




Penalty Estimation: Less non-linear problems

Optimal penalty parameter
>*

X >x <
= upm = upl.01—

Ek
Convergence indicator
k—1 k-1
Sp = & er = max{sg, 1/sp} — 1
Mk €k

Next penalty parameter

nmp — max{lO, 1/€k;}

M1 = pp min{m”, my |
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Example: Periodic Mesh for the Rotor 67

Set periodic condition in target boundary

* Mesh: p=4, 3.6M elements, boundary layer stretching 1:25
* Optimization: 768 cores, 52 minutes, 31.5MJ
* Metrics: minQ = 0.987, avg dist =1.5 - 108, max_dist =2.91 - 10>
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Example: Periodic Mesh for the Rotor 67

Periodic mesh: Impose periodic boundary condition

Mesh: p=4, 3.6M elements, boundary layer stretching 1:25

Penalty
estimation

Penalty

/adaption

1T(6%) - gb|

108 Early
10 termination

O 1 2 3 4 5
1teration 24



Forcing Term: Less Linear lterations

Adapt linear solver tolerance: From loose to tight tolerance

Track the progress of the optimization: use boundary constraint

log ( Ek/mk )

log (£2)

b =

Linear solver tolerance

_ 1—tg 2%
0 = 6loose ' 5tight
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Pre-conditioned GMRES: 3 Times Less Memory

® Separate the linear problem in smaller blocks: X, y, z coordinates
H;; H;» Hj3 b
H=|H>; Hszs Hosj3 b = :02
Hs; Hs> Hsj3s D3

® Block-based SOR and forward substitution
Hl,l 0 0 Xll-l_l b1 H1,2 Hljg Xll
H2,1 HQ’Q 0 Xl2+1 = b2 — 0 H2’3 Xl2
Hs, Hszz Hss/ \x{! b3 0 0 X4

® Each block: GMRES preconditioned with RASDD(1)+SSOR(2)

o O O

® Store the 3 diagonal blocks and use matrix-free products for the rest

* 3 iteration of block-SOR, 8, = §%/2
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Example: Influence of the improvements

Uniform Mesh for a sphere

Isotropic mesh
1.44M elements, p=4
/68 processors
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Distributed Solver: Concluding Remarks

* Key Improvements:
® p-continuation

® Penalty parameter adaption
* Block-SOR pre-conditioner
® Forcing term (only for p=2)

°* Improvements:
®* Decrease time and energy: 4 times
®* Decrease memory footprint: 3 times

3 times larger meshes with
the same resources
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High-Lift Prediction Workshop

(Ruiz-Gironés, Roca AIAA’22)

* Pre-process
* Post-process
* Software, libraries, and languages

29



HLPW: Pre-processing for curving-friendly inputs

°* Setup the simulation intent: repair geometry & virtual model

° Linear mesh generation:
° Element size: Simulation and geometry accuracy

°* Curving: curving-friendly mesh leads to easy curving process

* Convert sequential inputs to parallel inputs
®* Sequential inputs are bottlenecks

®* Create a hdf5 parallel input

30



HLPW: Check curved mesh and create output file

°* Mesh validity and quality: Numeric validation

° Visual inspection: Paraview in distributed parallel
Locate low-quality and low-accuracy elements

°* Curving iterative process:
Remesh low-quality and low-accuracy elements

°* Create output file: python wrapper of cgns library
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HLPW: Software, Libraries and Languages

® Virtual model & linear mesh: Pointwise

® Distributed solver: our python implementation with FEniCS library
® CAD engine: our python wrapper of Project Geode / OpenCASCADE
® Linear solver library: petsc4py interface to PETSc

® Distributed parallel solver: running on MareNostrum 4

® Visualization: distributed parallel Paraview

* cgns output: our python wrapper of cgns library
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Example: CRM-HL of the 4th HLPW

* Mesh: p=2 & p=3, 8M elements, boundary layer stretching 1:250
* Accuracy: relative to aircraft length ~10-7 - 10-°
* Computational resources: 768 processors

®*p=2-12 minutes

®*p =3 —-48 minutes

Our meshes provided the best match with experimental results
(Z) Wang AIAA’22)
33



Our Participation in HLPW: Concluding Remarks

°* Preparing curving-friendly inputs takes days (human labor)
® Tune the virtual model & linear mesh — Iterative process
® Curving-friendly inputs — High-quality mesh in a short time

°* Mesh curving for the CRM-HL takes minutes (computing wall time)
®* We generate larger meshes than the CFD community wants to run
® Curving is a steady-state problem with less unknowns than CFD

°* You can try our meshes!
® Free to download in the 4th & 5t" HLPW websites

Our meshes provided the best match with
experimental results

34



Summary & Conclusions
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Summary & conclusions: Large-Scale Curving

* Mesh curving constrained formulation:
* Always numerically valid

* Optimal quality
* Approximates target geometry
* Tightly converged

* Complex geometry in parallel: mesh approximates virtual geometry
* Large-scale curving: 3 times larger meshes on thousands of cores

* High-lift prediction: Our meshes lead to best match with experiments

Our curving enables high-fidelity
simulations on complex geometries
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