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Motivation: Wind Tunnel vs Simulation

Unstructured high-order methods

• Geometric flexibility: using unstructured meshes

• More accuracy: with same #DOFs, less dissipation and dispersion

They require curved high-order meshes

• Geometric error: straight elements hamper simulation accuracy

Wind tunnel data
(4th HLPW)

(NASA AIAA)

High-order simulation
(ZJ Wang AIAA’23)
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Motivation: Curved Meshes for Flow Simulation

Large-scale curved meshes in complex virtual geometries

• Approximate virtual CAD B-rep: using curved elements

• Mesh features: small elements & size gradation, boundary layer...

• Mesh quality: facilitates solving the simulation problems
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Mesh Curving Methods

Direct methods: Create curved mesh from scratch

• Delaunay (Feng, Alliez, Busé, Delingette, Desbrun ToG’18)

• Advancing front (Mohammadi, Shontz IMR’21)

Indirect methods: Linear mesh generation + curving step

• PDE-based

• Linear / non-linear elasticity
(Persson, Peraire), (Xie, Poya, Sevilla, Hassan), (Turner, Moxey, Sherwin, Peiró) 

• Winslow (Fortunato, Persson), ...

• Optimization-based 

• Mesh distortion / quality (Tomov, Mittal, Kolev), (Karman),

(Gargallo-Peiró, Ruiz-Gironés, Sarrate, Roca), (Feuillet, Loseille, Alauzet)...

• Nodal displacement (Toulorge, Johnen, Lambrechts, Remacle), ...

• Other quantities (Stees, Shontz), ...
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Outline

• Curving solution

• Complex geometry in parallel

• Large-scale distributed curving

• High-Lift Prediction Workshop
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Curving Solution
(Ruiz-Gironés, Gargallo, Sarrate, Roca IMR’17 & CAD’19)
(Ruiz-Gironés, Roca IMR’18, IMR’19 & CAD’22)

• Constrained optimization problem

• Continuous penalty
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Our Formulation : Constrained Optimization

(Ruiz-Gironés, Roca IMR’18, IMR’19, CAD’22, AIAA’22)

(Knupp SIAM J. Sci. Comput.‘01)
(Roca, Gargallo, Sarrate IMR’12)
(Gargallo, Roca, Peraire, Sarrate IJNME’15)

(Ruiz-Gironés, Roca, Sarrate CAD’16)
(Ruiz-Gironés, Gargallo, Sarrate, Roca IMR’17 & CAD’19)
(Ruiz-Gironés, Sarrate, Roca IMR’16)

(Ruiz-Gironés, Sarrate, Roca IMR’15 & JCP’21)
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Our Solution: Continuous Penalty Method

(Ruiz-Gironés, Roca IMR’18, IMR’19 & CAD’22)

Penalty method: Optimize several unconstrained problems

Non-linear problem: volume & boundary

Fix-point iterative solver: Newton + backtracking line-search

Compute target 
configuration

Optimize mesh
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Example: Sample meshes

3.6M tets, p=4 0.7M tets, p=4
stretching 1:105

1.6M tets, p=3, stretching 1:750 4M tets, p=4, stretching 1:400
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Features

• Constrained optimization problem:

Minimize mesh distortion while approximating the virtual model

• Mesh floats:

Mesh approximates the geometry

• Mesh is always valid:

No need to introduce untangling

• Virtual geometry aware:

Elements span several entities

• Tight tolerances:

Fully converged meshes avoid element oscillations

• Newton’s method with backtracking line-search:

Ensures quadratic convergence near solution



12

Complex geometry in parallel
(Ruiz-Gironés, Roca IMR’18, IMR’19 & CAD’22)

(Ruiz-Gironés, Roca AIAA’22)

• Virtual model

• Point projection

• Parallel distribution of input & output
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Virtual Model

• Virtually join surfaces: Simulation intent

• Decouple CAD & mesh topologies: one group for fuselage, wings, …

• Surfaces: From 415 original surfaces to 215 virtual surfaces

Virtual surfaces: top view Virtual surfaces: bottom view
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Point Projection onto Virtual Models

• Projection onto virtual surface:
(Ruiz-Gironés, Roca IMR’18, IMR’19 & CAD’22)

• Loop over the geometric surfaces

• Projection onto virtual curve: Dealing with surface gaps
(Ruiz-Gironés, Roca AIAA’22)

• Project the node in-between the surface gap
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Parallel Distribution of input & output

• Input data:

•Marked linear mesh

• Virtual CAD model

• Linear & high-order meshes:

• Each processor owns a set of elements and nodes

• Each processor projects his boundary nodes

• Virtual model:

• Each processor has a copy of the geometry

• Easy to distribute, just read the CAD file

• Processors have enough memory for this approach
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Large-scale distributed curving
(Ruiz-Gironés, Roca IMR’19 & CAD’22)

• Reduce computational time

• Reduce memory footprint

• Reduce energy consumption
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Lagrange Multiplier Approximation

• In penalty method: for 𝜇 large enough, Lagrange multiplier is like

• Function over the mesh boundary:

•When converging, doubling 𝜇 halves the constraint values

• We use this to improve the solver:

• Given a target constraint norm, which 𝜇 we need?
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p-Continuation: Less DOF’s & Sparser Matrices

Idea: Use a lower degree solution as an initial approximation

Implementation:

• Increase polynomial degree when boundary constraint is “good enough”

• Approximate next penalty parameter using constraint norm
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Examples

p-continuation: Falcon aircraft

Mesh: Degree 4, 4M elements, boundary layer stretching 1:400
Optimization: 2400 cores, RASDD(1) - SSOR(2)
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Examples

p-continuation: Falcon aircraft

Mesh: Degree 4, 4M elements, boundary layer stretching 1:400
Optimization: 2400 cores, RASDD(1) - SSOR(2)

No p-continuation p-continuation

Early
termination

Penalty
estimation

p=2

p=3

p=4

p=4



Examples

p-continuation: Falcon aircraft

Mesh: Degree 4, 4M elements, boundary layer stretching 1:400
Optimization: 2400 cores, RASDD(1) - SSOR(2)

p-continuation technique allows:

• 4 times reduction in time

• 8 times reduction in energy
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Penalty Estimation: Less non-linear problems

Optimal penalty parameter

Convergence indicator

Next penalty parameter
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Example: Periodic Mesh for the Rotor 67

Set periodic condition in target boundary

• Mesh: p=4, 3.6M elements, boundary layer stretching 1:25

• Optimization: 768 cores, 52 minutes, 31.5MJ

• Metrics: minQ = 0.987, avg_dist = 1.5 · 10-8, max_dist = 2.91 · 10-5
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Example: Periodic Mesh for the Rotor 67

Periodic mesh: Impose periodic boundary condition

Mesh: p=4, 3.6M elements, boundary layer stretching 1:25

Early
termination

Penalty
estimation

Penalty
adaption

p=2

p=3

p=4
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Forcing Term: Less Linear Iterations

Adapt linear solver tolerance: From loose to tight tolerance

Track the progress of the optimization: use boundary constraint

Linear solver tolerance
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Pre-conditioned GMRES: 3 Times Less Memory

• Separate the linear problem in smaller blocks: x, y, z coordinates

• Block-based SOR and forward substitution

• Each block: GMRES preconditioned with RASDD(1)+SSOR(2)

• Store the 3 diagonal blocks and use matrix-free products for the rest

• 3 iteration of block-SOR, 𝛿𝑝𝑟𝑒 =  𝛿1/2
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Example: Influence of the improvements

Uniform Mesh for a sphere

Isotropic mesh

1.44M elements, p=4

768 processors

+ p-continuation + p-continuation
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Distributed Solver: Concluding Remarks

• Key Improvements:

•p-continuation

•Penalty parameter adaption

•Block-SOR pre-conditioner

•Forcing term (only for p=2)

• Improvements:

•Decrease time and energy: 4 times

•Decrease memory footprint: 3 times

3 times larger meshes with

the same resources
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High-Lift Prediction Workshop
(Ruiz-Gironés, Roca AIAA’22)

• Pre-process

• Post-process

• Software, libraries, and languages
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HLPW: Pre-processing for curving-friendly inputs

• Setup the simulation intent: repair geometry & virtual model

• Linear mesh generation:

• Element size: Simulation and geometry accuracy

• Curving: curving-friendly mesh leads to easy curving process

• Convert sequential inputs to parallel inputs

• Sequential inputs are bottlenecks

• Create a hdf5 parallel input
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HLPW: Check curved mesh and create output file

• Mesh validity and quality: Numeric validation

• Visual inspection: Paraview in distributed parallel
Locate low-quality and low-accuracy elements

• Curving iterative process:

Remesh low-quality and low-accuracy elements

• Create output file: python wrapper of cgns library
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HLPW: Software, Libraries and Languages

• Virtual model & linear mesh: Pointwise

• Distributed solver: our python implementation with FEniCS library

• CAD engine: our python wrapper of Project Geode / OpenCASCADE

• Linear solver library: petsc4py interface to PETSc

• Distributed parallel solver: running on MareNostrum 4

• Visualization: distributed parallel Paraview

• cgns output: our python wrapper of cgns library
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Example: CRM-HL of the 4th HLPW

• Mesh: p=2 & p=3, 8M elements, boundary layer stretching 1:250

• Accuracy: relative to aircraft length ~10-7 – 10-6

• Computational resources:  768 processors

• p = 2 → 12 minutes

• p = 3 → 48 minutes

Our meshes provided the best match with experimental results
(ZJ Wang AIAA’22)



34

Our Participation in HLPW: Concluding Remarks

• Preparing curving-friendly inputs takes days (human labor)

• Tune the virtual model & linear mesh   →   Iterative process

• Curving-friendly inputs   →  High-quality mesh in a short time

• Mesh curving for the CRM-HL takes minutes (computing wall time)

• We generate larger meshes than the CFD community wants to run

• Curving is a steady-state problem with less unknowns than CFD

• You can try our meshes!

• Free to download in the 4th & 5th  HLPW websites

Our meshes provided the best match with 

experimental results
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Summary & Conclusions
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Summary & conclusions: Large-Scale Curving

• Mesh curving constrained formulation:

• Always numerically valid

• Optimal quality

• Approximates target geometry

• Tightly converged

• Complex geometry in parallel: mesh approximates virtual geometry

• Large-scale curving: 3 times larger meshes on thousands of cores

•High-lift prediction: Our meshes lead to best match with experiments

Our curving enables high-fidelity 

simulations on complex geometries
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