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The expansion of the 

Universe is accelerating.
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- There seems to be more matter than what we observe…

- The big-bang is big-banging faster than we thought …

“dark matter” (but we do not know what it is)

“dark energy” (but we do not know what it is)
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Anomalies and tensions in Λ-CDM (Review in [Peebles 2022])

- Baryonic Tully-Fischer rotation curve

- Acceleration of the expansion

- Anomalous abundance of small haloes

- Formation time of structures

- Anomalous dipole

- Anomalous bulk flow

- …

We need new ideas, 

new models, 

new equations here !



pc/h : parsec (= 3.2 light year)

The millenium simulation project, 

Max Planck Institute fur Astrophysik

Simulations



Observations
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(F = ma)

Gravity for a set of particles

(N-body)

Lagrangian coordinates

1. Newton-Poisson
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Gravity for a density field ?

Eulerian coordinates

(F=ma)

Velocity field Correction term

(convective derivative)
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Newton-Poisson        Brenier-Monge-Ampère



1. Newton 2. Brenier-Monge-Ampère 3. Optimal Transport

4. Discrete Optimal Transp.5. Large Deviations Pple.6. The Path Bundle Method



3. Optimal Transport and Monge-Ampère



3. Optimal Transport and Monge-Ampère



3. Optimal Transport and Monge-Ampère



3. Optimal Transport and Monge-Ampère

T(r)



3. Optimal Transport and Monge-Ampère

B



3. Optimal Transport and Monge-Ampère

T-1(B)

B



3. Optimal Transport and Monge-Ampère

T-1(B)

B



3. Optimal Transport and Monge-Ampère

T-1(B)

B



3. Optimal Transport and Monge-Ampère

T-1(B)

B



3. Optimal Transport and Monge-Ampère

T-1(B)

B

Lagrange multiplier associated with

the constraint
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Optimality conditions

Legendre-Fenchel dual

Insert into constraint:

Pointwise:

Monge-Ampère equation:
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N points ri N points qi
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5. Large Deviation Principle

σ :The permutation that minimizes



5. Large Deviation Principle

σ :The permutation that minimizes

Why ?

Can we deduce this formula from something else ?
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5. Large Deviation Principle

Idea has similarities 

with least action

Extremize action between 

fixed initial and final conditions.

Deduce law of motion

(differential relation)

Extrapolate it



5. Large Deviation Principle

M indistinguishable particles

Independent Brownian motion

No interaction
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5. Large Deviation Principle

We suppose that we observe

them here after T seconds

What is the “most probable” motion

that accounts for the observation ?
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It’s a soft inf !



5. Large Deviation Principle

Probability of observing the 

particles here after T seconds:

Make “temperature” ϵ tend to 0:



5. Large Deviation Principle

Trajectories become geodesics
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6. The Path Bundle Method

Initial condition (homogeneous)
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Initial condition (homogeneous)

Structures formation

Observation
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6. The Path Bundle Method

: barycenter of 
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Results – Cosmological simulation

• 300 million particles

• 200 Mpc/h

• Λ-CDM initial conditions [Planck]

• Newton-Poisson and BMAG
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Halo masses

Halo shapes

Angular momentum

Rotation curves
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Differences:

• Larger number of filaments
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• Haloes spin faster. Origin of angular momentum of disk galaxies ?

• Centrail density profile of haloes is flatter

• More power on large scales and less power on small scales
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Results – Conclusions

BMAG is a small non-linear modification of Newtonian dynamics

Differences:

• Larger number of filaments

• Smaller number of small haloes

• Haloes spin faster. Origin of angular momentum of disk galaxies ?

• Centrail density profile of haloes is flatter

• More power on large scales and less power on small scales

Can be falsified with future observational surveys

Questions:

•BMAG as the weak field limit of another strong-field theory ?

•BMAG emerging from GR (or other modified theories of gravity) ?

•Entropic gravity ?
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Future works:
Exploring the shape of 

the Universe



Large Scale 

Structure

3D, Euclidean

Galactic dynamics

6D phase space

General Relativity

4D, Riemannian

Calabi-Yau Manifolds

10D, Complex
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Scale

L = Planck

L = 1 Pc/h    N = 1 … 10

L = 1 kPc/h    N = 106

L = 1 GPc/h     N = 109

A

B

C

DFuture works:
Exploring the shape of 

the Universe
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