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The expansion of the
Universe is accelerating.
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Afterglow Light
Pattern

375,000 yrs.

Inflation

Quan

Dark Energy
Accelerated Expansion

Dark Ages Development of
Galaxies, Planets, etc.
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Big Bang Expansion

13.77 billion years




Mysteries in the sky

- There seems to be more matter than what we observe...

- The big-bang is big-banging faster than we thought ...




Mysteries in the sky

- There seems to be more matter than what we observe...
“dark matter” (but we do not know what it is)

- The big-bang is big-banging faster than we thought ...

“dark energy” (but we do not know what it is)
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Mysteries in the sky

Anomalies and tensions in A-CDM (Review in [Peebles 2022])

- Baryonic Tully-Fischer rotation curve

- Acceleration of the expansion

- Anomalous abundance of small haloes
- Formation time of structures

- Anomalous dipole

- Anomalous bulk flow




Mysteries in the sky

We need new ideas,
new models,
new equations here !
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1. Newton

T2 — 1|

Vo
4mG(p — p)
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1. Newton-Poisson

F1 = miGg
O O N
' G?, — _GZ i xj
® 0 2 o =P
' j#i




1. Newton-Poisson

2 —_
88;1; = V¢; < — (F=ma)

Gravity for a set of particles

Pi = =G Ej:l- ”xi—;j" (N-body)

Lagrangian coordinates
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1. Newton-Poisson

p(x,t)

Gravity for a density field ?
Eulerian coordinates
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1. Newton-Poisson

(F=ma)
a(x,t) = G(x,t) = Vo(x, t)

o)== Jlf (—yyn

p(xj t) /ﬁf =g Green function \
Gravity for a density field ?
Eulerian coordinates f(x) = /] K(x,y)g(y)dy
JNS N
1 1
K XY) = —
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1. Newton-Poisson

(F=ma)
a(x? t) — G(X: t) — ng(x? t)

o)== Jlf (—yyn

p(xj t) /ﬁf =g Green function \
Gravity for a density field ?
Eulerian coordinates f(x) = /] K(x,y)g(y)dy
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1. Newton-Poisson

(F=ma)
a(x,t) = G(x,t) = Vo(x, t)

Oru + (u'y)u] = V¢

N

Velocity field Correction term
(convective derivative)

p(x,1)

Gravity for a density field ?
Eulerian coordinates A¢ = 4mGp




1. Newton-Poisson

(F=ma)
du+ (u-V)u

Ap = 4nGp

Vo

p(x,t)

Gravity for a density field ?
Eulerian coordinates




1. Newton-Poisson

(F=ma)
u+(u-Viu = Vo
Ap = 4nGp
Ohp+V-(pu) = 0

(Mass conservation continuity eqgn)

p(x,t)

Gravity for a density field ?
Eulerian coordinates




1. Newton-Poisson

(F=ma)
u+(u-Viu = Vo
A¢p =4rG(p —|p)
Ohp+V-(pu) = 0

(Mass conservation continuity eqgn)

p(x,t)

Gravity for a density field ?
Eulerian coordinates




2. Brenier-Monge-Ampere




2. Brenier-Monge-Ampere

Taylor expansion of the determinant of a matrix around the identity:
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Taylor expansion of the determinant of a matrix around the identity:
det(1 + eA) = 1 + etr(A4) + O(e?)
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Taylor expansion of the determinant of a matrix around the identity:
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2. Brenier-Monge-Ampere

Taylor expansion of the determinant of a matrix around the identity:
det(1 + eA) = 1 + etr(A4) + O(e?)
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2. Brenier-Monge-Ampere

Taylor expansion of the determinant of a matrix around the identity:
det(1 + eA) = 1 + etr(A4) + O(e?)
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etrace(A) = trace(D?¢)
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det(1 +¢cA) = det(D?*¢ + 1) = det (D*(¢ + 17 /2))

= A(¢p+1?/2)
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Newton-Poisson Brenier-Monge-Ampere
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3. Optimal Transport

T = VO

infr f|r— (r)]?p(r)dr

subj ect to:

[pda= [ pl)dr VB
B T-1(B)
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3. Optimal Transport and Monge-Ampere

infp [f|r— r)|2p(r )dr]

subject to:

Jpda= [ p(r)dr VB

B T-1(B)
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3. Optimal Transport and Monge-Ampere

infr [f|r— r)|2p(r )dr]

subject to:

/ g(q)pdq = / g(T(X)p(r)dr Vg
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3. Optimal Transport and Monge-Ampere

P

sup inf[ L(T,¥)= [ p(r)T(r)- rdr +
T ¥

infr r—7T(r)|? dr
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subject to:
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3. Optimal Transport and Monge-Ampere

P p

sup inf[ L(T|¥) = [ p(r)T(r) - rdr +
T v

infp L/f r — T (r)| p(I‘)dI‘] [ p¥{q)dq — f\I)(T(r))p(I‘)dr]

subject to:

/ g(q)pdq = / g(T(r))p(r)dr Vg Lagrange multiplier associated with

the constraint
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3. Optimal Transport and Monge-Ampere
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3. Optimal Transport and Monge-Ampere
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subject to:

/g(q)pdq — /g(T(r))p(r)dr Vg Optimality conditions
oL
3_T =0 = r= V\I’(T(r))
0°L
- > : .
572 = 0 = W is a convex function

T(r) = V&®(r), where:
B(r) = ¥*(r) = inflq-r — ¥(q)
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subject to:
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Pointwise: T(r) V&(r), where:
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3. Optimal Transport and Monge-Ampere
sgpi%f[ L(T,¥)= [ p(r)T(r)- rdr +

infr r—7T(r)|? dr
[f| () elx) ] [ p¥(q)dq — [ (T )p(r)dr]

subject to:
/g(q)pdq — /Q(T(r))p(r)dr Vg Optimality conditions
oL
3_T =0 = r= V\I’(T(I‘))

Insert into constraint:
O%L

p [ avem)pieEldr = [g(Vow)pmir 72

>0 = W is a convex function

Pointwise: T(r) = V&(r), where:

pdet D*® = p(r) O(r) = Y (r) =inf|q-r— ¥(q)]
q

Monge-Ampere equation:

pAD = p

Legendre-Fenchel dual
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4. Discrete Optimal Transport

(F — Vo
)] A =

"o | kP
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p p

N points r, N points q;

e el




4. Discrete Optimal Transport

T(r) = g

e el




4. Discrete Optimal Transport

P T(r) = dg P

i
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4. Discrete Optimal Transport

P T(r) = dg P
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F;, = — ;
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o :The permutation that minimizes [ — qg(@:)|
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5. Large Deviation Principle

F; !

(r’i - qa‘(t))

- ArGp

2
o :The permutation that minimizes “I'@ — qg(i)| }




5. Large Deviation Principle

1
- AnGp

2
o :The permutation that minimizes “rz — qg(@)| }

F;

(l'?; - qﬂ'{l))

Why ?
Can we deduce this formula from something else ?
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5. Large Deviation Principle

ldea has similarities
with least action

Extremize action between
fixed initial and final conditions.

Deduce law of motion
(differential relation)

Extrapolate it




5. Large Deviation Principle

f)fj M indistinguishable particles
o

Independent Brownian motion
o No interaction

FE




5. Large Deviation Principle

° We suppose that we observe
o0 ..L/ them here after T seconds




5. Large Deviation Principle

We suppose that we observe
.L/ them here after T seconds

What is the “most probable” motion
that accounts for the observation ?




5. Large Deviation Principle

Probability of observing the

o9 particles here after T seconds:
e0_0<

Prob (XiE(T) ~ Y) ~~

PeriTrt
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5. Large Deviation Principle

Probability of observing the

o9 particles here after T seconds:
e0_0<

It's a soft Iinf !

Prob (XiE(T) ~ Y) ~~

PeriTrt

i S Y, = X212

n — 3M
ﬁ ZJES.&; €Xp [ 2eT (QWET) 2
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5. Large Deviation Principle

Probability of observing the

particles here after T seconds:
o<

Make “temperature” € tend to O:

—lim elogProb [:’C’f(T) = Y] ~

e—0 perm

D |Ya(i}_X¢n|g]
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5. Large Deviation Principle

Trajectories become geodesics

—lim elogProb [:’C’,_,{E(T) = Y] =

e—0 perm

: > Yoo =X
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5. Large Deviation Principle

Along these geodesics:

= X(7) — Qo|x(r)(0)




5. Large Deviation Principle

Along these geodesics:

= X(7) — Qo]x () ()
= X(1) = VO(X(t)) = —Ve(X(r))
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6. The Path Bundle Method

- To Observation

| 5 ﬂ , T Structures formation

TO Initial condition (homogeneous)




6. The Path Bundle Method
d2r1—('r)

dr?
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6. The Path Bundle Method
d2r1—('r)
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.. . T Fi(1) = —=Vo(r)
4 2 . % e =TI, — V(I)(rfia T)




6. The Path Bundle Method

d2r;.; (T)
= * « dTg B FE (T)
- :‘. . To Fi(t) = =Vo(r)
4 ¢ ' % =T, — V(I’(riaq_)
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Results — Cosmological simulation

* 300 million particles

» 200 Mpc/h

* A\-CDM Initial conditions [Planck]
* Newton-Poisson and BMAG
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Results — Simulation with 300 M cells

Toor 25 Mpc/h




Results — Simulation with 300 M cells

Monge-Ampere

25 Mpc/h




Results — Simulation with 300 M cells

Poisson (zoom)




Results — Simulation with 300 M cells

Monge-Ampere (zoom)
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Results — Conclusions

BMAG is a small non-linear modification of Newtonian dynamics

Differences:

 Larger number of filaments

« Smaller number of small haloes

« Haloes spin faster. Origin of angular momentum of disk galaxies ?
 Centrall density profile of haloes is flatter

* More power on large scales and less power on small scales




Results — Conclusions

BMAG is a small non-linear modification of Newtonian dynamics

Differences:
 Larger number of filaments
« Smaller number of small haloes
« Haloes spin faster. Origin of angular momentum of disk galaxies ?
 Centrall density profile of haloes is flatter
* More power on large scales and less power on small scales
Can be falsified with future observational surveys




Results — Conclusions

BMAG is a small non-linear modification of Newtonian dynamics

Differences:
 Larger number of filaments
« Smaller number of small haloes
« Haloes spin faster. Origin of angular momentum of disk galaxies ?
 Centrall density profile of haloes is flatter
* More power on large scales and less power on small scales
Can be falsified with future observational surveys

Questions:
*‘BMAG as the weak field limit of another strong-field theory ?
‘BMAG emerging from GR (or other modified theories of gravity) ?

*Entropic gravity ?
2o —
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