

Tetrahedron VII

*BSC-UPC
Barcelona*

Oct 9-11 2023

Monge-Ampère Gravity

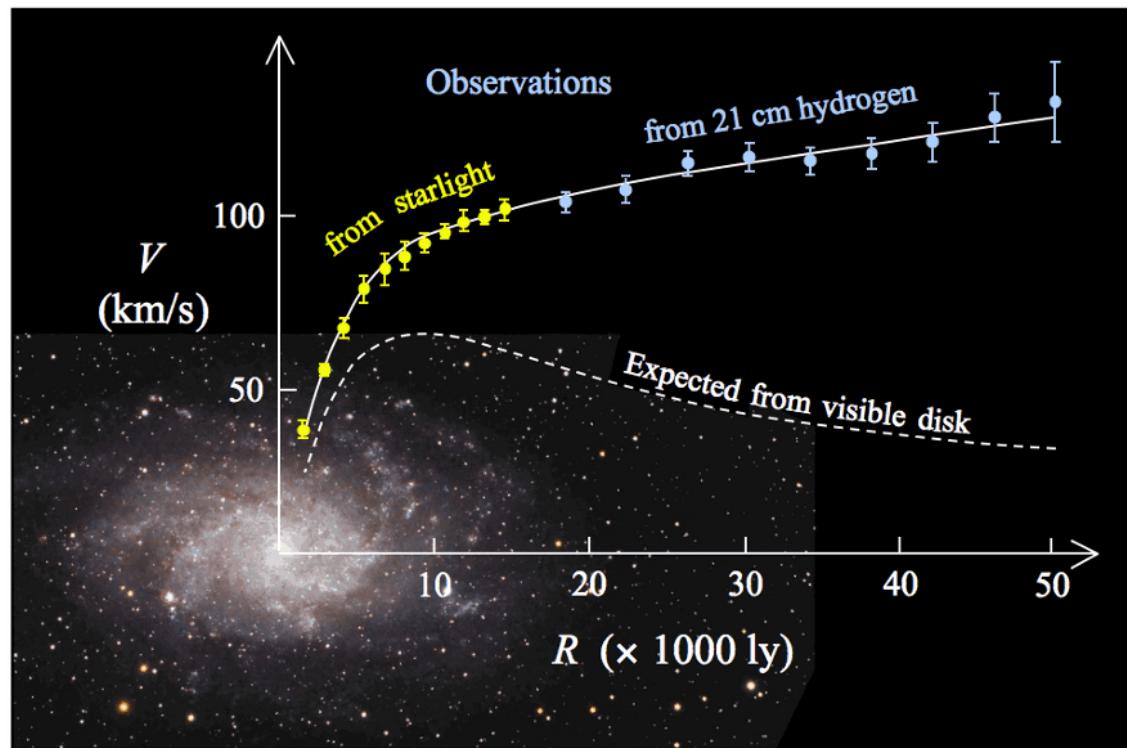
*Bruno Lévy
ParMA project-team*

Joint work with Yann Brenier, Pierre Boldrini and Roya Mohayaee

Inria Saclay
Labo. de Mathématiques d'Orsay
Université Paris Saclay

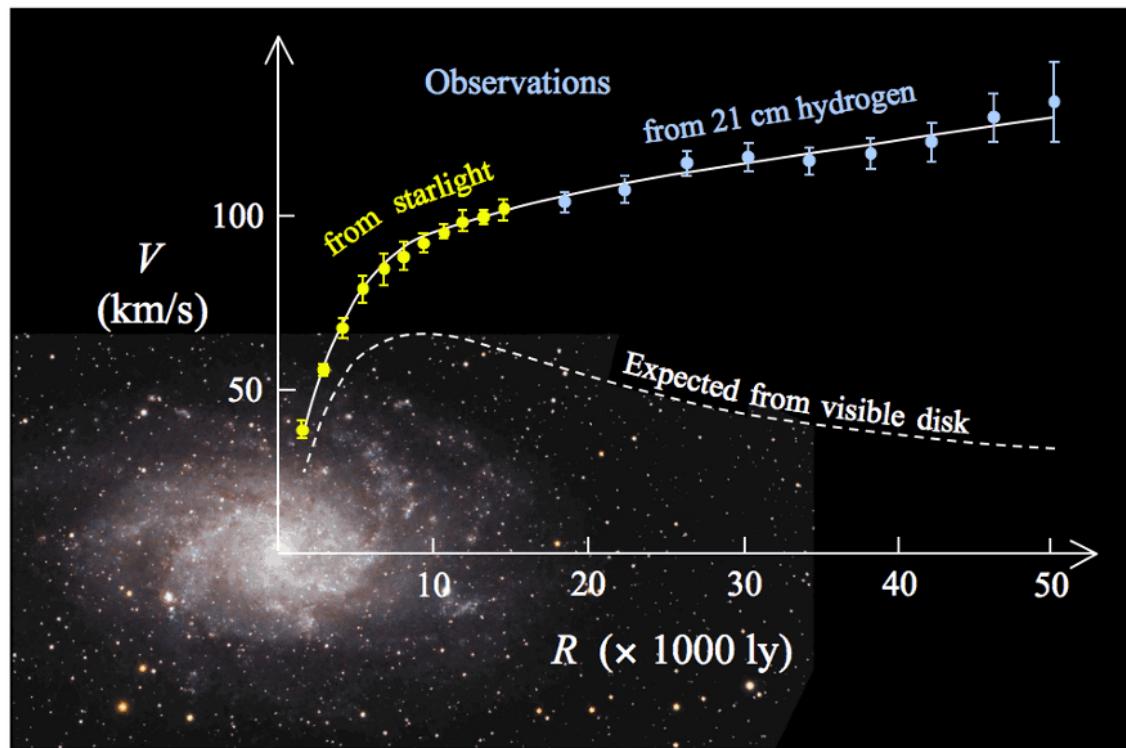
Mysteries in the sky ...

Mysteries in the sky



Vera Rubin - 1962

Mysteries in the sky

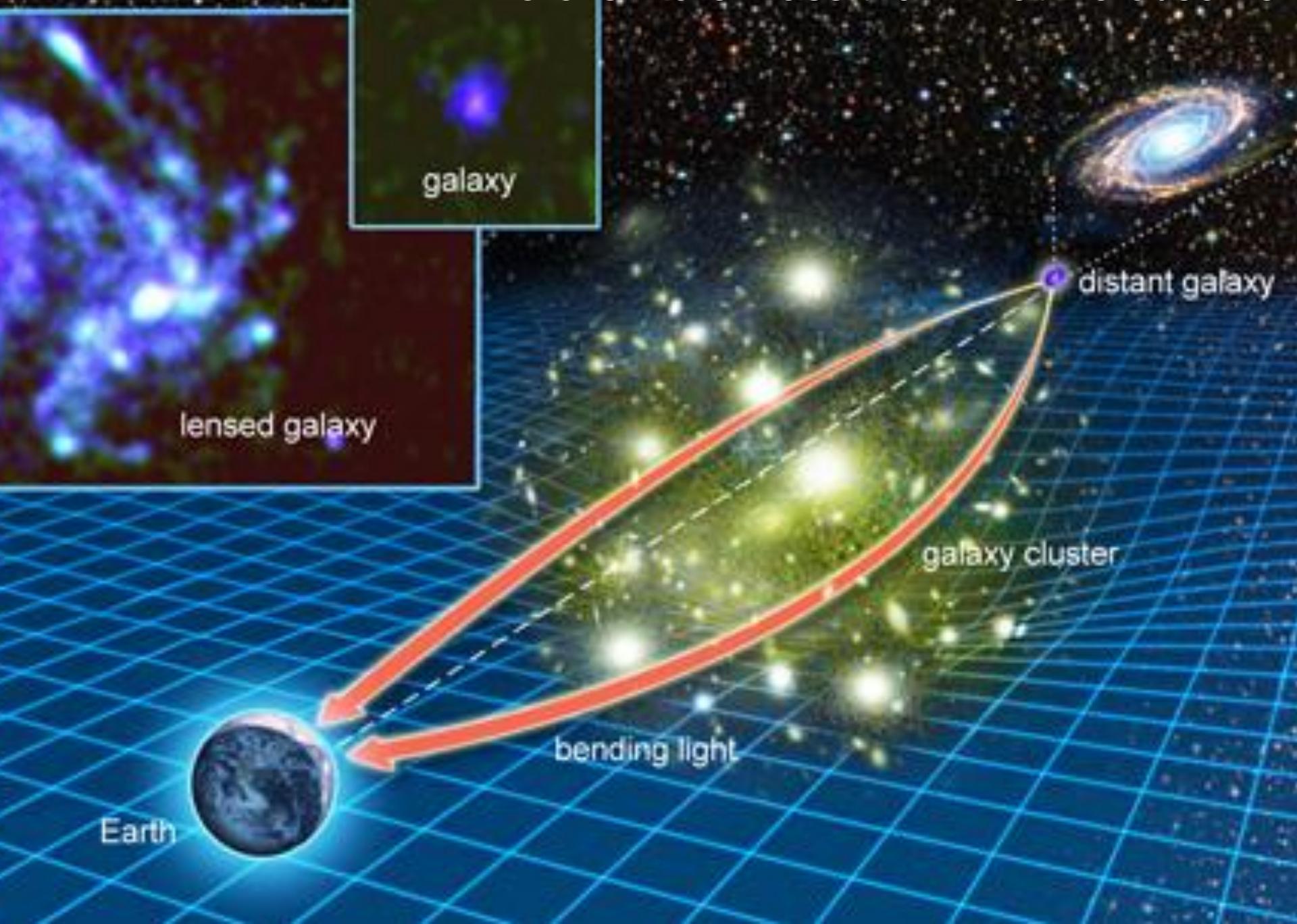


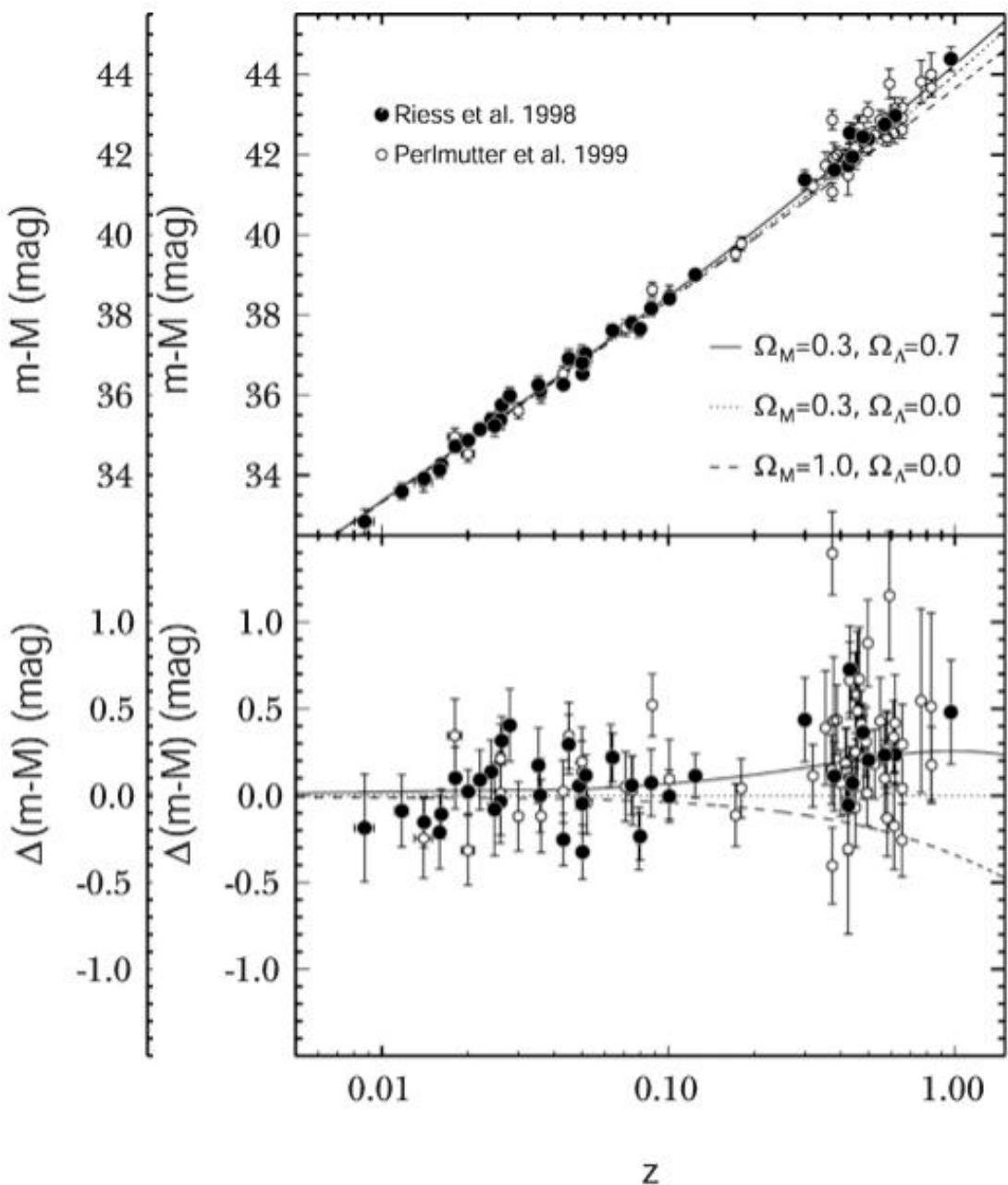
Vera Rubin - 1962

There is more mass than what we observe

There is more mass than what we observe

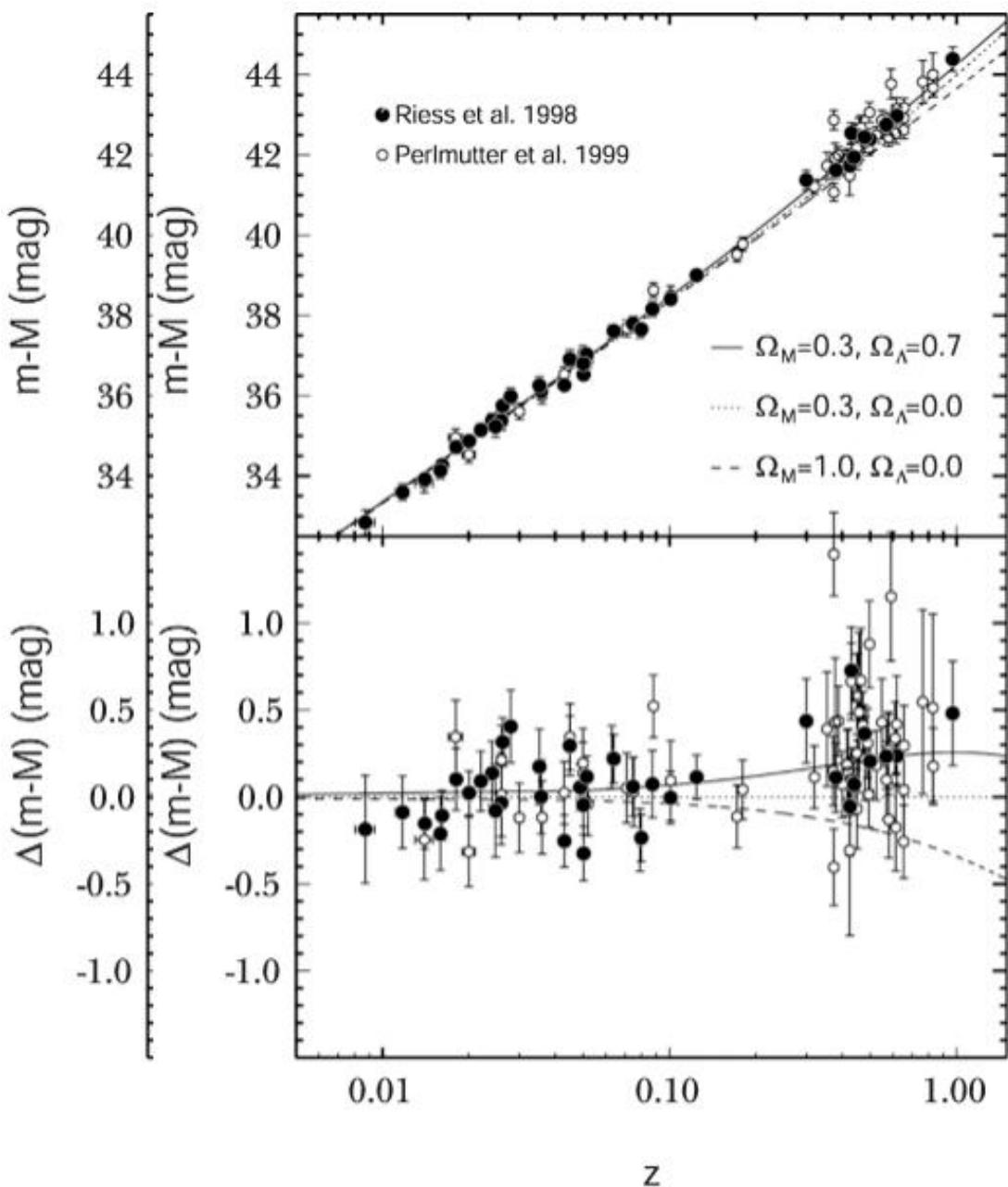
There is more mass than what we observe





Type Ia supernovae
“standard candles”

Perlmutter
Riess



Type Ia supernovae “standard candles”

Perlmutter
Riess

The expansion of the
Universe is accelerating.

Dark Energy
Accelerated Expansion

Afterglow Light
Pattern

375,000 yrs.

Dark Ages

Development of
Galaxies, Planets, etc.

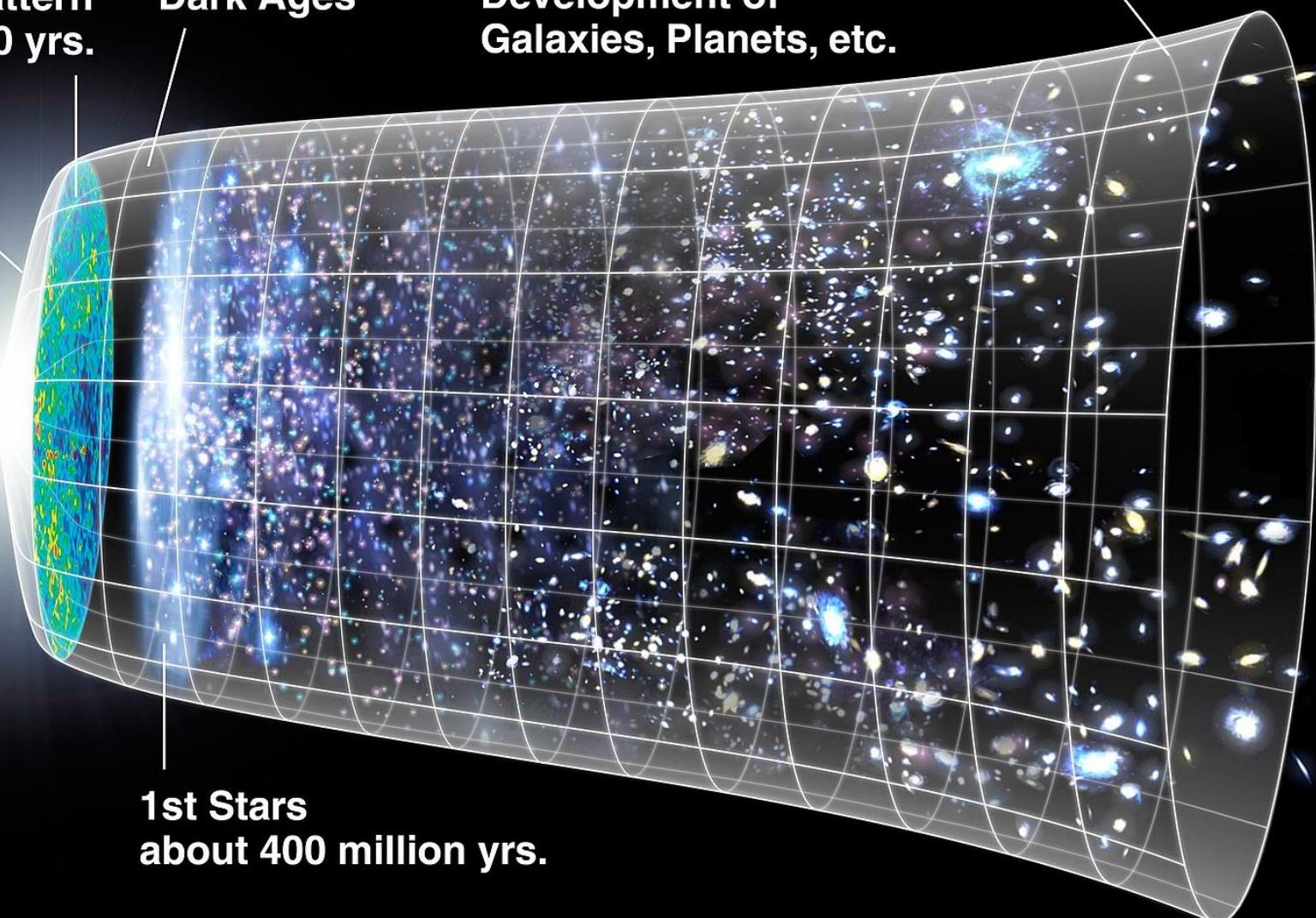
Inflation

Quantum
Fluctuations

1st Stars
about 400 million yrs.

Big Bang Expansion

13.77 billion years



Mysteries in the sky

- There seems to be more matter than what we observe...
- The big-bang is big-banging faster than we thought ...

Mysteries in the sky

- There seems to be more matter than what we observe...

“dark matter” (but we do not know what it is)

- The big-bang is big-banging faster than we thought ...

“dark energy” (but we do not know what it is)

Mysteries in the sky

Anomalies and tensions in Λ -CDM (Review in [Peebles 2022])

- Baryonic Tully-Fischer rotation curve
- Acceleration of the expansion
- Anomalous abundance of small haloes
- Formation time of structures
- Anomalous dipole
- Anomalous bulk flow
- ...

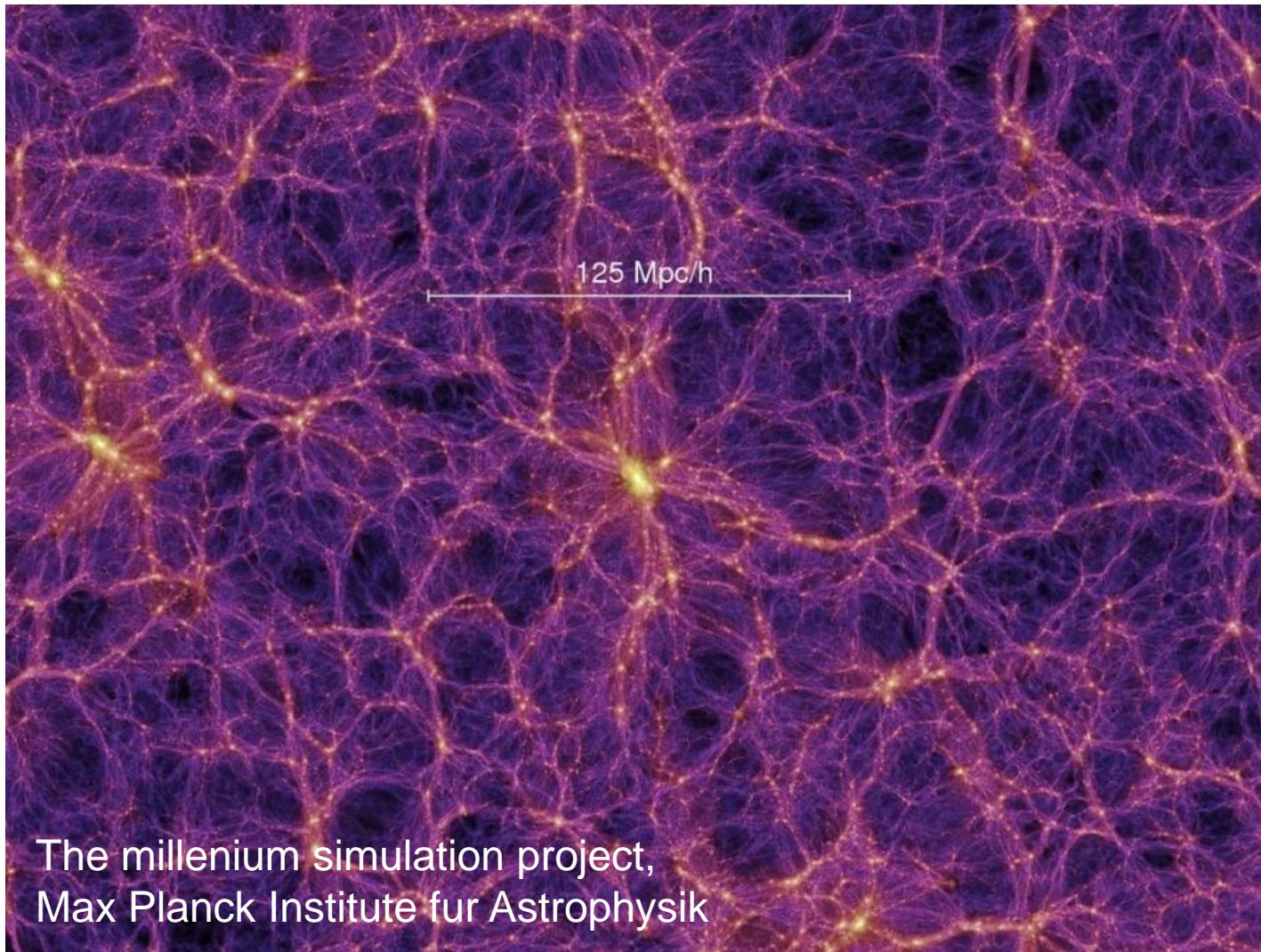
Mysteries in the sky

Anomalies and tensions in Λ -CDM (Review in [Poulin 2022])

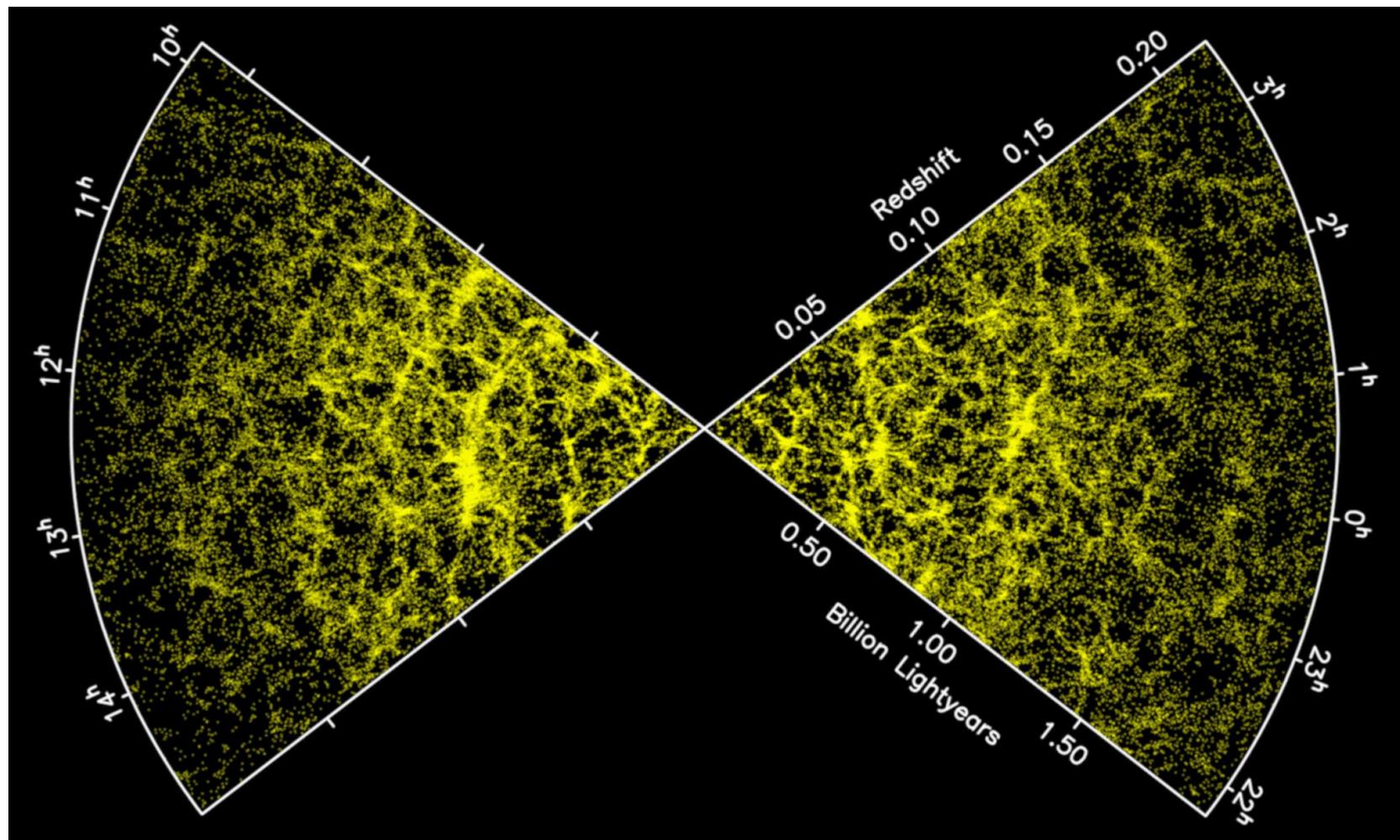
- Baryons
- Acceleration
- Anomalous rotation
- Formation of galaxies
- Anomalous redshifts
- Anomalous luminosities
- ...

We need new ideas,
new models,
new equations here !

Simulations



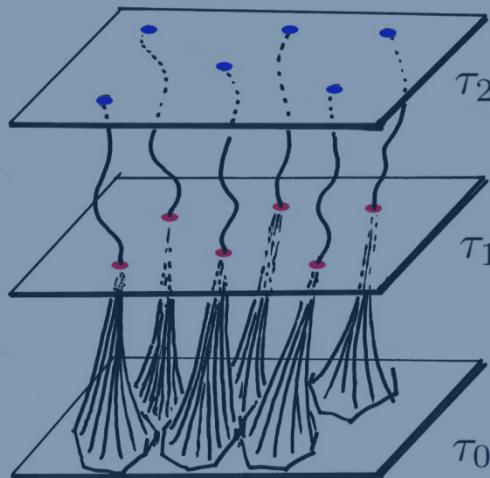
Observations



1. Newton

$$F = -\mathcal{G} \frac{m_1 m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2}$$

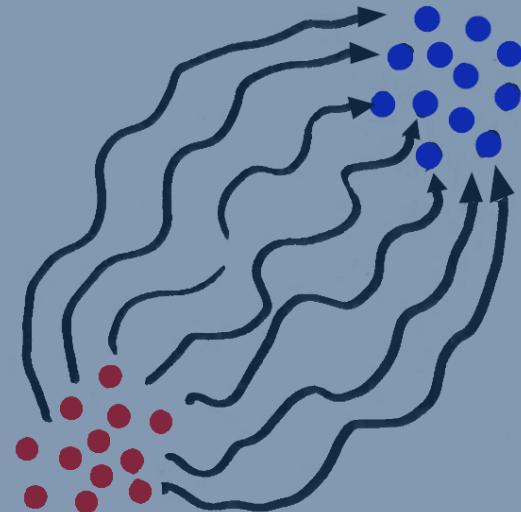
$$\begin{cases} F &= \nabla \phi \\ \Delta \phi &= 4\pi \mathcal{G}(\rho - \bar{\rho}) \end{cases}$$



2. Brenier-Monge-Ampère

$$\begin{cases} F &= \nabla \Phi \\ \Delta \Phi &= \frac{\rho}{\bar{\rho}} \\ \Phi &= \frac{\phi}{4\pi \mathcal{G} \bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{cases}$$

5. Large Deviations Ppl.



3. Optimal Transport

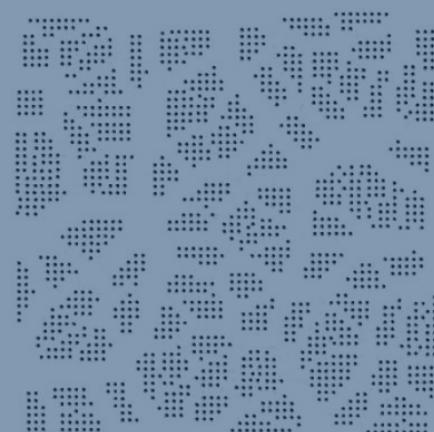
$$T = \nabla \Phi$$

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right] \text{ subject to:}$$

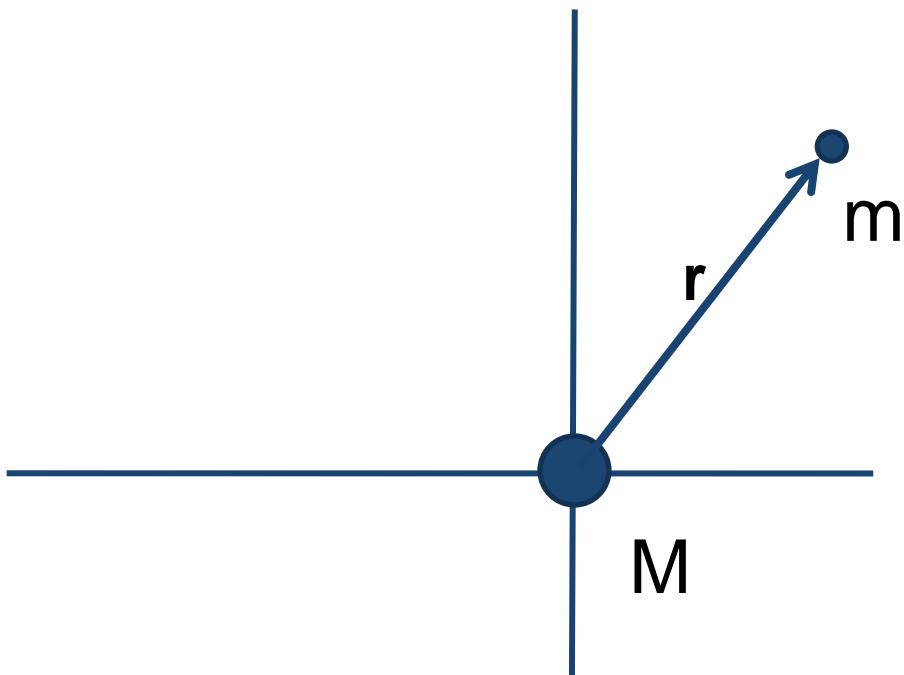
$$\int_B \bar{\rho} d\mathbf{q} = \int_{T^{-1}(B)} \rho(\mathbf{r}) d\mathbf{r} \quad \forall B$$

4. Discrete Optimal Transp.

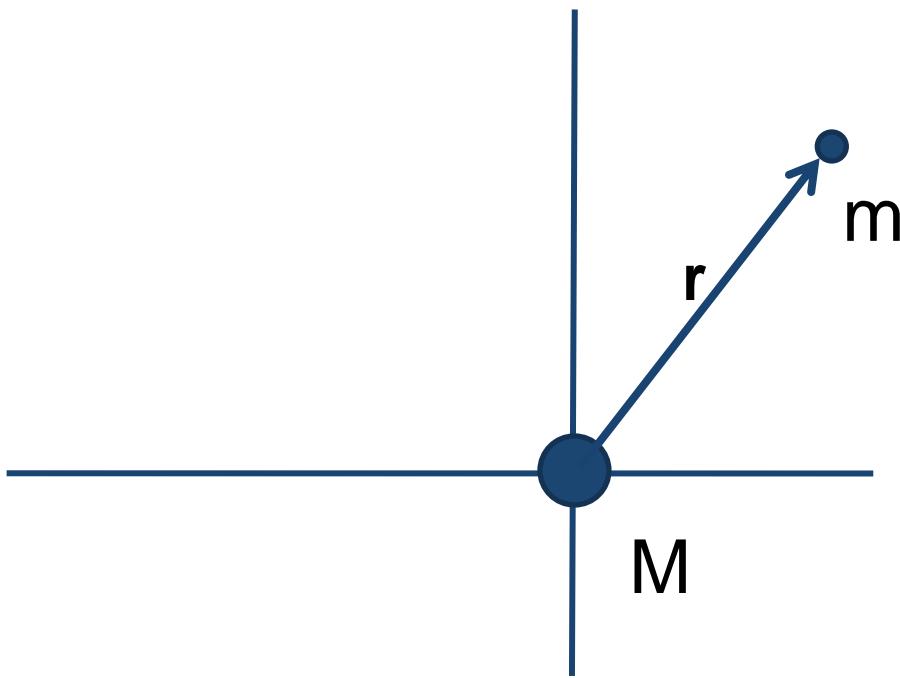
$$\inf_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right]$$



1. Newton-Poisson

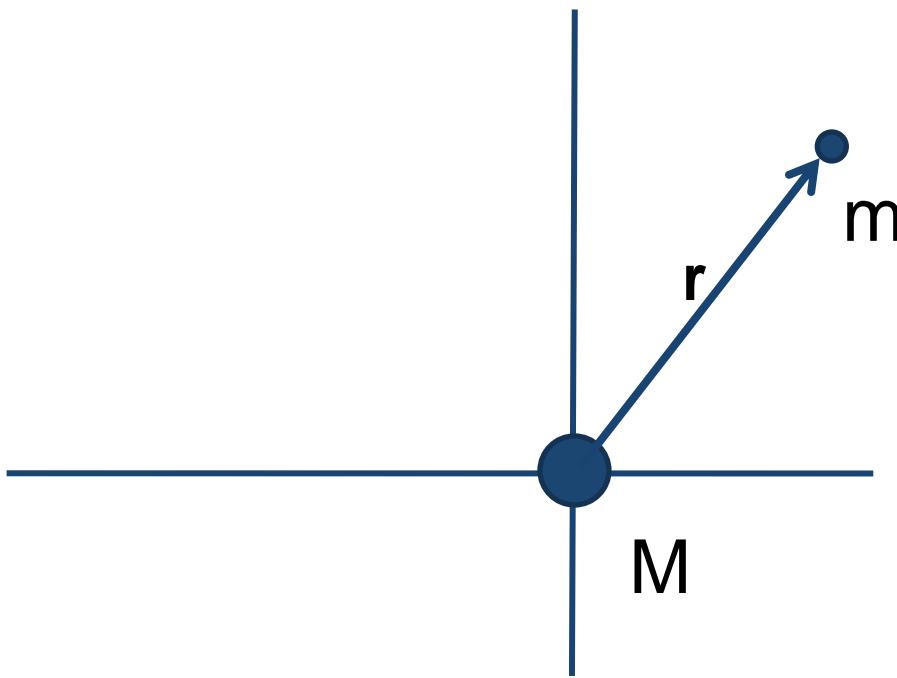


1. Newton-Poisson



$$\mathbf{F}(\mathbf{r}) = m\mathbf{G}(\mathbf{r}) = -m\mathcal{G}M \frac{\mathbf{r}}{\|\mathbf{r}\|^3}$$

1. Newton-Poisson

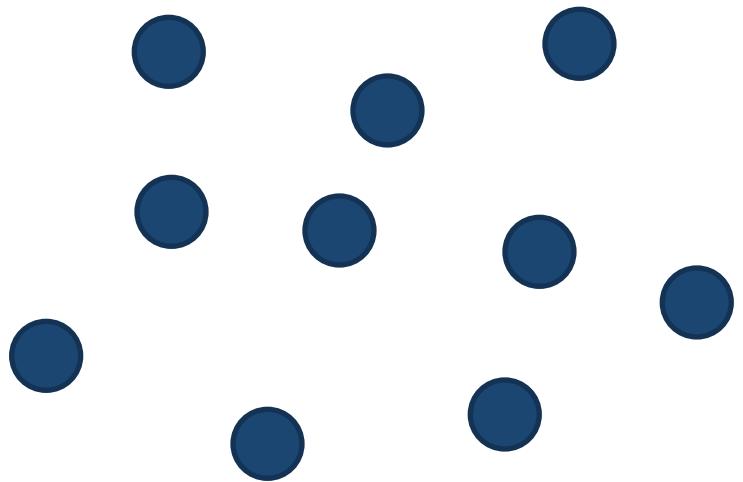


$$\mathbf{F}(\mathbf{r}) = m\mathbf{G}(\mathbf{r}) = -m\mathcal{G}M \frac{\mathbf{r}}{\|\mathbf{r}\|^3}$$

$$\mathbf{G}(\mathbf{r}) = -\nabla\phi(\mathbf{r}) \quad ; \quad \phi(\mathbf{r}) = -m\mathcal{G} \frac{M}{\|\mathbf{r}\|}$$

1. Newton-Poisson

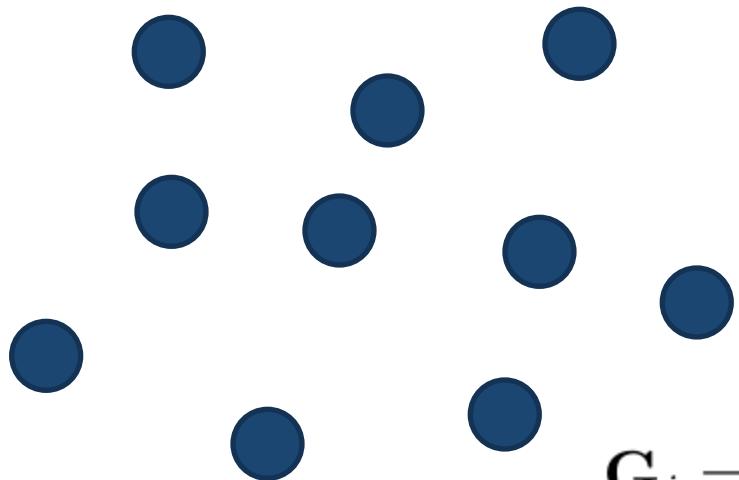
$$\mathbf{F}_i = m_i \mathbf{G}_i$$



$$\mathbf{G}_i = -\mathcal{G} \sum_{\substack{j=1 \\ j \neq i}}^N \frac{\mathbf{x}_i - \mathbf{x}_j}{\|\mathbf{x}_i - \mathbf{x}_j\|^3}$$

1. Newton-Poisson

$$\mathbf{F}_i = m_i \mathbf{G}_i$$



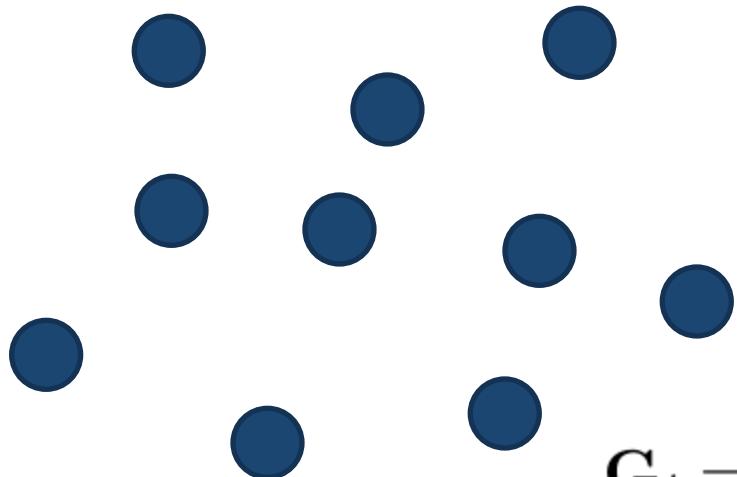
$$\mathbf{G}_i = \nabla \phi_i$$

$$\phi_i = -G \sum_{\substack{j=1 \\ j \neq i}}^N \frac{m_j}{\|\mathbf{x}_i - \mathbf{x}_j\|}$$

$$\mathbf{G}_i = -G \sum_{\substack{j=1 \\ j \neq i}}^N \frac{\mathbf{x}_i - \mathbf{x}_j}{\|\mathbf{x}_i - \mathbf{x}_j\|^3}$$

1. Newton-Poisson

$$\mathbf{F}_i = m_i \mathbf{G}_i$$



$$\mathbf{G}_i = -G \sum_{\substack{j=1 \\ j \neq i}}^N \frac{\mathbf{x}_i - \mathbf{x}_j}{\|\mathbf{x}_i - \mathbf{x}_j\|^3}$$

$$\mathbf{G}_i = \nabla \phi_i \quad ; \quad \phi_i = -G \sum_{\substack{j=1 \\ j \neq i}} \frac{m_j}{\|\mathbf{x}_i - \mathbf{x}_j\|}$$

$$\begin{cases} \frac{\partial^2 \mathbf{x}_i}{\partial t^2} = \nabla \phi_i & \xleftarrow{\quad} (\mathbf{F} = m\mathbf{a}) \\ \phi_i = -G \sum_{\substack{j=1 \\ j \neq i}} \frac{m_j}{\|\mathbf{x}_i - \mathbf{x}_j\|} \end{cases}$$

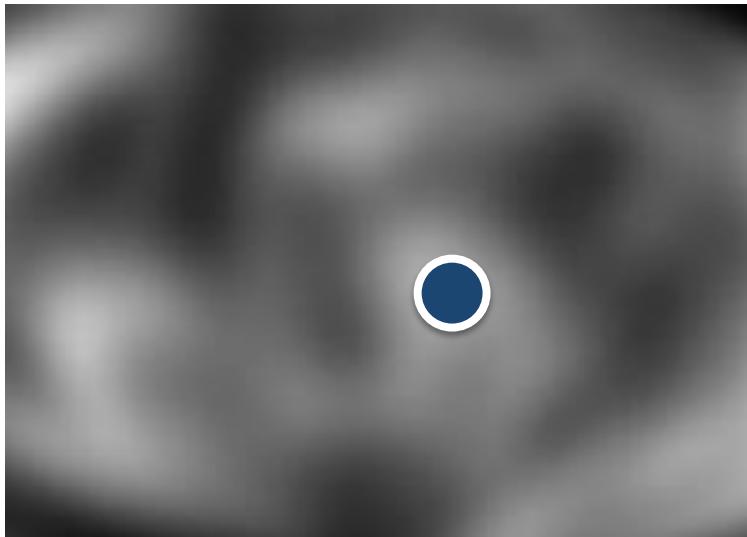
Gravity for a set of particles
(N-body)
Lagrangian coordinates

1. Newton-Poisson

$$\rho(\mathbf{x}, t)$$

Gravity for a density field ?
Eulerian coordinates

1. Newton-Poisson



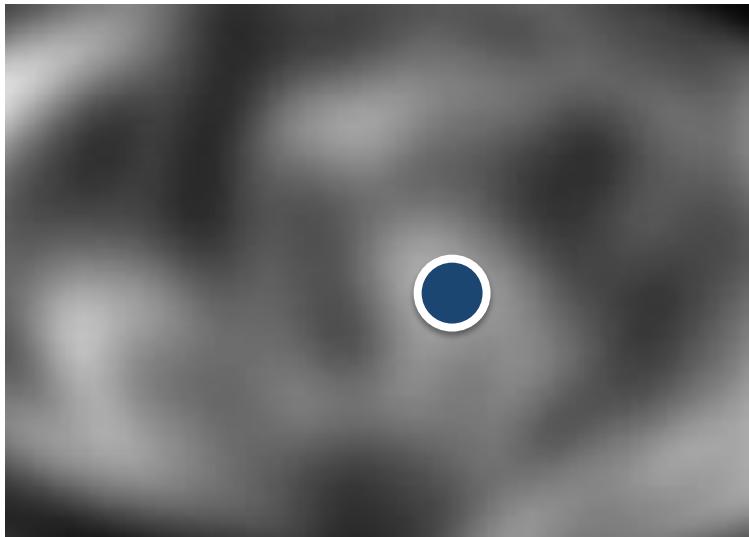
$$\rho(\mathbf{x}, t)$$

Gravity for a density field ?
Eulerian coordinates

$$(F=ma)$$

$$\mathbf{a}(\mathbf{x}, t) = \mathbf{G}(\mathbf{x}, t) = \nabla \phi(\mathbf{x}, t)$$

1. Newton-Poisson



$$\rho(\mathbf{x}, t)$$

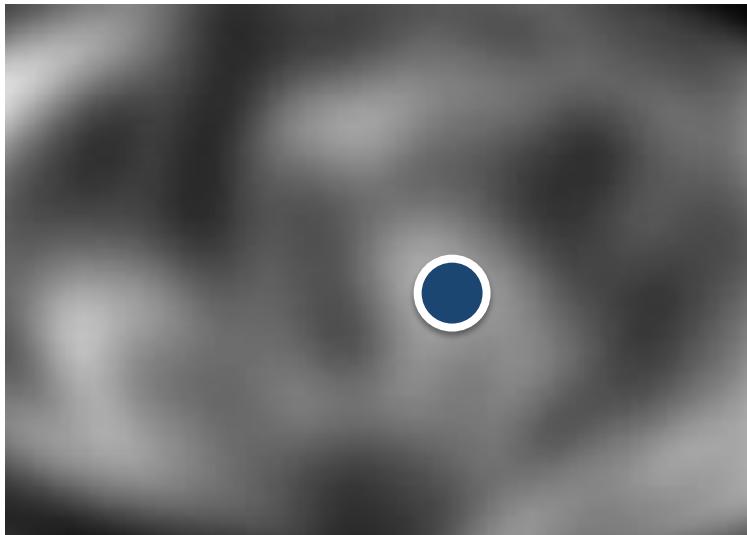
Gravity for a density field ?
Eulerian coordinates

$$(F=ma)$$

$$\mathbf{a}(\mathbf{x}, t) = \mathbf{G}(\mathbf{x}, t) = \nabla \phi(\mathbf{x}, t)$$

$$\phi(\mathbf{x}, t) = -\mathcal{G} \iiint_V \frac{\rho(\mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|} d\mathbf{y}$$

1. Newton-Poisson



$$\rho(\mathbf{x}, t)$$

Gravity for a density field ?
Eulerian coordinates

$$(F=ma)$$

$$\mathbf{a}(\mathbf{x}, t) = \mathbf{G}(\mathbf{x}, t) = \nabla \phi(\mathbf{x}, t)$$

$$\phi(\mathbf{x}, t) = -\mathcal{G} \iiint_V \frac{\rho(\mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|} d\mathbf{y}$$

$$\Delta f = g$$

Green function

$$f(\mathbf{x}) = \iiint_V K(\mathbf{x}, \mathbf{y}) g(\mathbf{y}) d\mathbf{y}$$

$$K(\mathbf{x}, \mathbf{y}) = -\frac{1}{4\pi} \frac{1}{\|\mathbf{x} - \mathbf{y}\|}$$

1. Newton-Poisson

$$\rho(\mathbf{x}, t)$$

Gravity for a density field ?
Eulerian coordinates

$$\Delta\phi = 4\pi\mathcal{G}\rho$$

$$(F=ma)$$

$$\mathbf{a}(\mathbf{x}, t) = \mathbf{G}(\mathbf{x}, t) = \nabla\phi(\mathbf{x}, t)$$

$$\phi(\mathbf{x}, t) = -\mathcal{G} \iiint_V \frac{\rho(\mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|} d\mathbf{y}$$

$$\Delta f = g$$

Green function

$$f(\mathbf{x}) = \iiint_V K(\mathbf{x}, \mathbf{y})g(\mathbf{y})d\mathbf{y}$$

$$K(\mathbf{x}, \mathbf{y}) = -\frac{1}{4\pi} \frac{1}{\|\mathbf{x} - \mathbf{y}\|}$$

1. Newton-Poisson

$$\rho(\mathbf{x}, t)$$

Gravity for a density field ?
Eulerian coordinates

$$\mathbf{a}(\mathbf{x}, t) = \mathbf{G}(\mathbf{x}, t) = \nabla \phi(\mathbf{x}, t)$$
$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \phi$$

Velocity field Correction term
(convective derivative)

$$\Delta \phi = 4\pi G \rho$$

1. Newton-Poisson

$$\rho(\mathbf{x}, t)$$

Gravity for a density field ?
Eulerian coordinates

$$(F=ma)$$

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \phi$$
$$\Delta \phi = 4\pi G \rho$$

1. Newton-Poisson

$$\rho(\mathbf{x}, t)$$

Gravity for a density field ?
Eulerian coordinates

$$(F=ma)$$

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \phi$$

$$\Delta \phi = 4\pi G \rho$$

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$

(Mass conservation *continuity eqn*)

1. Newton-Poisson

$$\rho(\mathbf{x}, t)$$

Gravity for a density field ?
Eulerian coordinates

(F=ma)

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \phi$$

$$\Delta \phi = 4\pi \mathcal{G} (\rho - \bar{\rho})$$

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$

(Mass conservation *continuity eqn*)

1. Newton

$$F = -\mathcal{G} \frac{m_1 m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2}$$
$$\left\{ \begin{array}{lcl} F & = & \nabla \phi \\ \Delta \phi & = & 4\pi \mathcal{G}(\rho - \bar{\rho}) \end{array} \right.$$

2. Brenier-Monge-Ampère

$$\left\{ \begin{array}{lcl} F & = & \nabla \Phi \\ \Delta \Phi & = & \frac{\rho}{\bar{\rho}} \\ \Phi & = & \frac{\phi}{4\pi \mathcal{G} \bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{array} \right.$$

3. Optimal Transport

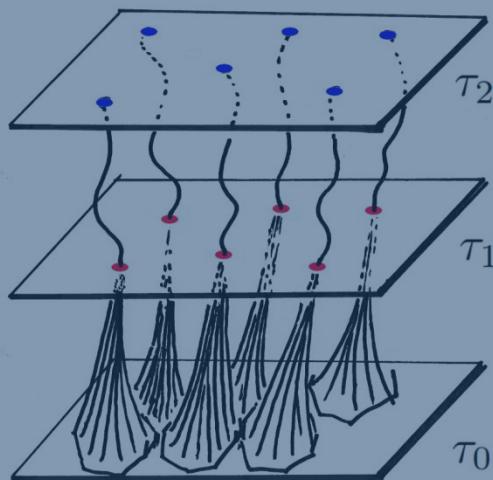
$$T = \nabla \Phi$$

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

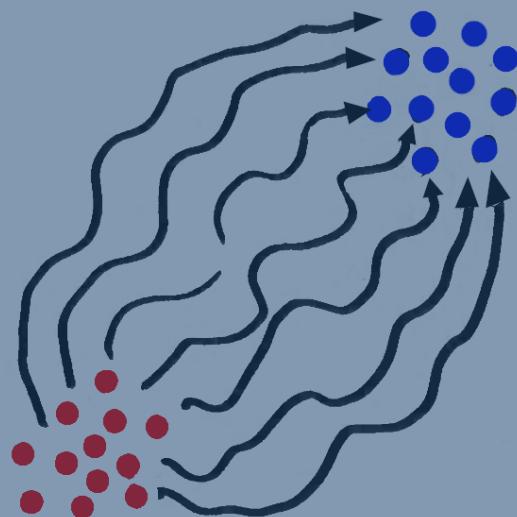
subject to:

$$\int_B \bar{\rho} d\mathbf{q} = \int_{T^{-1}(B)} \rho(\mathbf{r}) d\mathbf{r} \quad \forall B$$

6. The Path Bundle Method

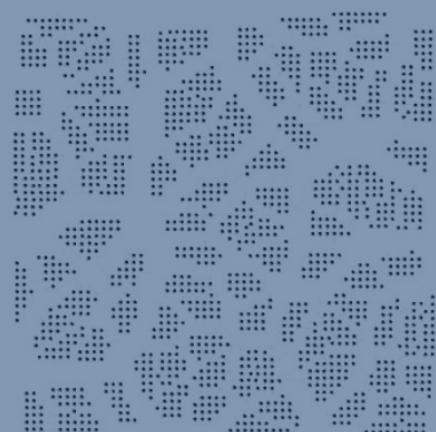


5. Large Deviations Ppl.



4. Discrete Optimal Transp.

$$\inf_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right]$$



2. Brenier-Monge-Ampère

Taylor expansion of the determinant of a matrix around the identity:

$$\det(1 + \varepsilon A) = 1 + \varepsilon \text{tr}(A) + O(\varepsilon^2)$$

2. Brenier-Monge-Ampère

Taylor expansion of the determinant of a matrix around the identity:

$$\det(1 + \varepsilon A) = 1 + \varepsilon \text{tr}(A) + O(\varepsilon^2)$$

$$\varepsilon A = \left[\frac{\partial^2 \phi}{\partial x_i \partial x_j} \right]$$

2. Brenier-Monge-Ampère

Taylor expansion of the determinant of a matrix around the identity:

$$\det(1 + \varepsilon A) = 1 + \varepsilon \text{tr}(A) + O(\varepsilon^2)$$

$$\varepsilon A = \left[\frac{\partial^2 \phi}{\partial x_i \partial x_j} \right]$$

$$\varepsilon \text{trace}(A) = \text{trace}(D^2 \phi)$$

2. Brenier-Monge-Ampère

Taylor expansion of the determinant of a matrix around the identity:

$$\det(1 + \varepsilon A) = 1 + \varepsilon \text{tr}(A) + O(\varepsilon^2)$$

$$\varepsilon A = \left[\frac{\partial^2 \phi}{\partial x_i \partial x_j} \right]$$

$$\begin{aligned} \varepsilon \text{trace}(A) &= \text{trace}(D^2 \phi) \\ &= \Delta \phi \end{aligned}$$

2. Brenier-Monge-Ampère

Taylor expansion of the determinant of a matrix around the identity:

$$\det(1 + \varepsilon A) = 1 + \varepsilon \text{tr}(A) + O(\varepsilon^2)$$

$$\varepsilon A = \left[\frac{\partial^2 \phi}{\partial x_i \partial x_j} \right]$$

$$\begin{aligned} \varepsilon \text{trace}(A) &= \text{trace}(D^2 \phi) \\ &= \Delta \phi \end{aligned}$$

$$\det(1 + \varepsilon A) = \det(D^2 \phi + 1) = \det(D^2(\phi + \mathbf{r}^2/2))$$

2. Brenier-Monge-Ampère

Taylor expansion of the determinant of a matrix around the identity:

$$\det(1 + \varepsilon A) = 1 + \varepsilon \text{tr}(A) + O(\varepsilon^2)$$

$$\varepsilon A = \left[\frac{\partial^2 \phi}{\partial x_i \partial x_j} \right]$$

$$\begin{aligned} \varepsilon \text{trace}(A) &= \text{trace}(D^2 \phi) \\ &= \Delta \phi \end{aligned}$$

$$\begin{aligned} \det(1 + \varepsilon A) &= \det(D^2 \phi + 1) = \det(D^2(\phi + \mathbf{r}^2/2)) \\ &= \Delta(\phi + \mathbf{r}^2/2) \end{aligned}$$

Newton-Poisson

$$\begin{cases} F &= \nabla \phi \\ \Delta \phi &= 4\pi \mathcal{G}(\rho - \bar{\rho}) \end{cases}$$

Brenier-Monge-Ampère

$$\begin{cases} F &= \nabla \Phi \\ \Delta \Phi &= \frac{\rho}{\bar{\rho}} \\ \Phi &= \frac{\phi}{4\pi \mathcal{G} \bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{cases}$$

$$\Delta \Phi = \det D^2 \Phi$$

$$\det(1 + \varepsilon A) = 1 + \varepsilon \text{tr}(A) + O(\varepsilon^2)$$

1. Newton

$$\begin{aligned} F &= -\mathcal{G} \frac{m_1 m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \\ \left\{ \begin{array}{lcl} F &= \nabla \phi \\ \Delta \phi &= 4\pi \mathcal{G}(\rho - \bar{\rho}) \end{array} \right. \end{aligned}$$

2. Brenier-Monge-Ampère

$$\left\{ \begin{array}{lcl} F &= \nabla \Phi \\ \Delta \Phi &= \frac{\rho}{\bar{\rho}} \\ \Phi &= \frac{\phi}{4\pi \mathcal{G} \bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{array} \right.$$

3. Optimal Transport

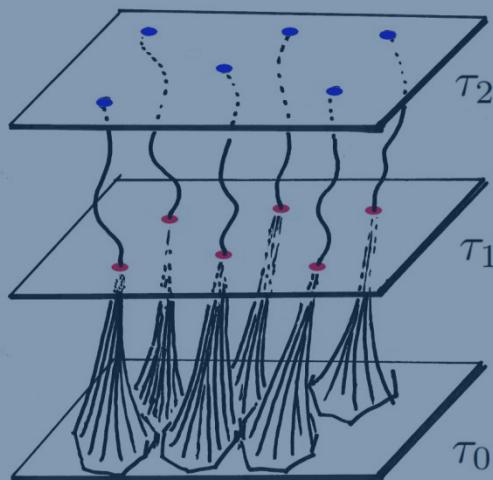
$$T = \nabla \Phi$$

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

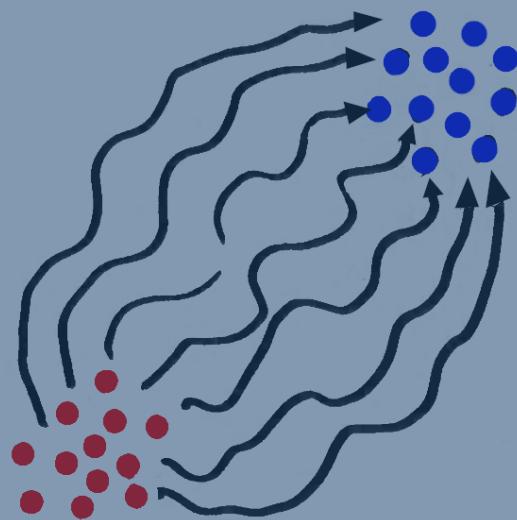
subject to:

$$\int_B \bar{\rho} d\mathbf{q} = \int_{T^{-1}(B)} \rho(\mathbf{r}) d\mathbf{r} \quad \forall B$$

6. The Path Bundle Method

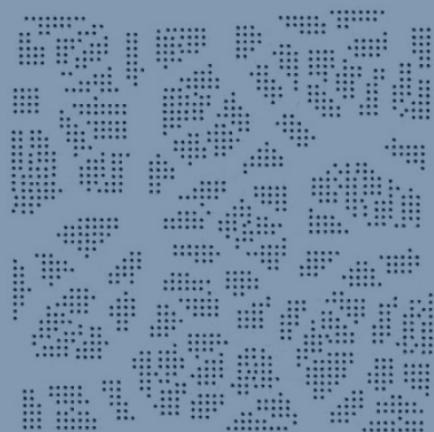


5. Large Deviations Ppl.



4. Discrete Optimal Transp.

$$\inf_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right]$$



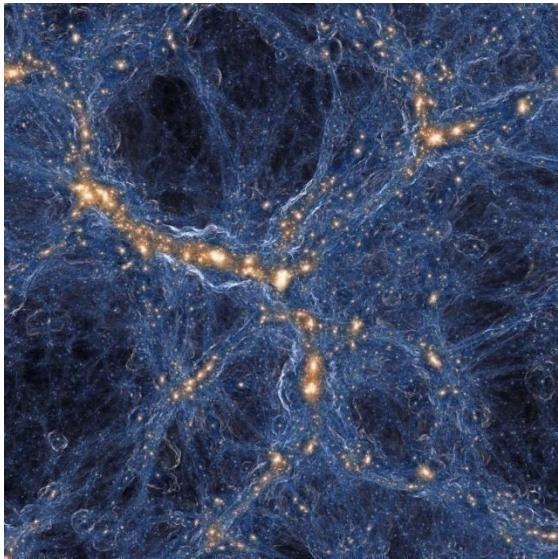
3. Optimal Transport and Monge-Ampère

$$\Delta \Phi = \frac{\rho}{\bar{\rho}}$$

3. Optimal Transport and Monge-Ampère

$$\bar{\rho} \Delta \Phi = \rho$$

3. Optimal Transport and Monge-Ampère

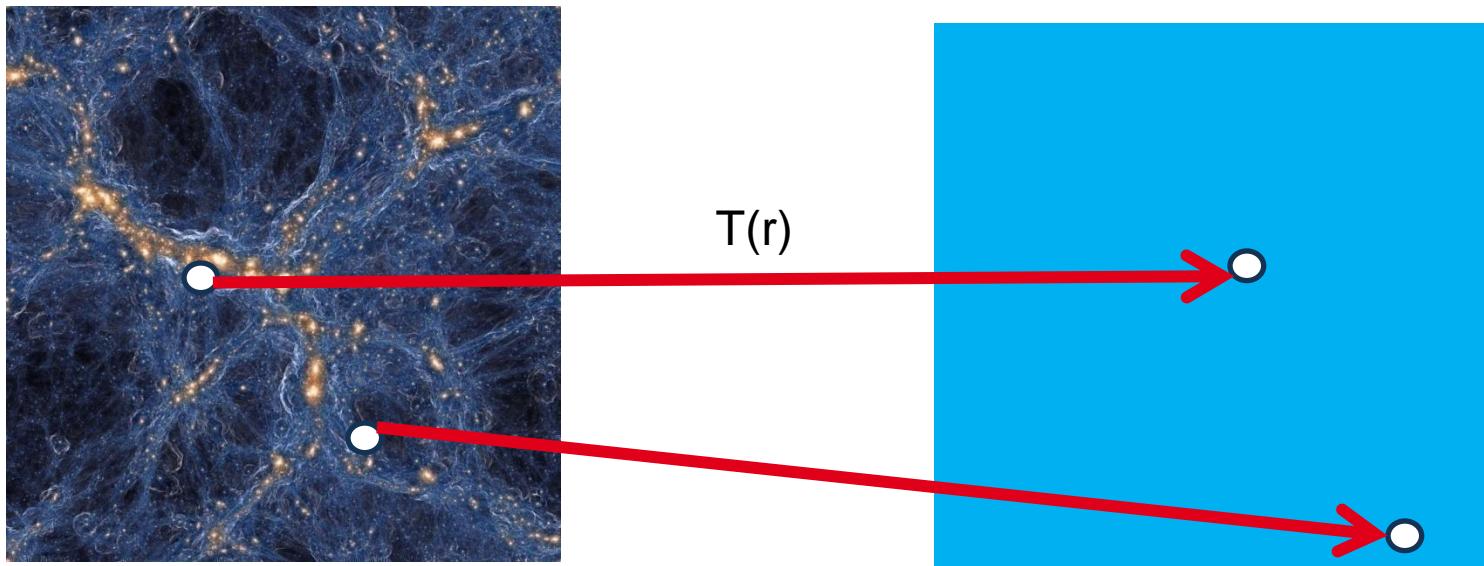


$$\rho$$

$$\bar{\rho}$$

$$\bar{\rho} \Delta \Phi = \rho$$

3. Optimal Transport and Monge-Ampère

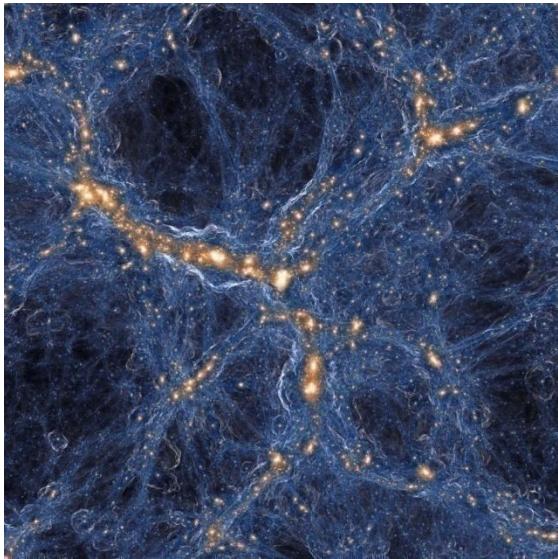


ρ

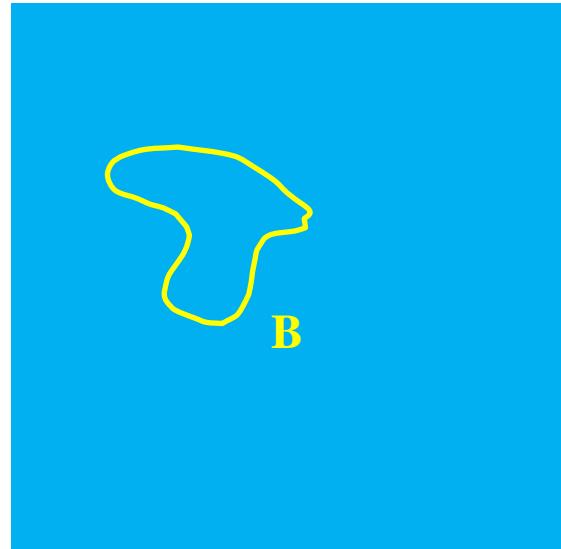
$\bar{\rho}$

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

3. Optimal Transport and Monge-Ampère



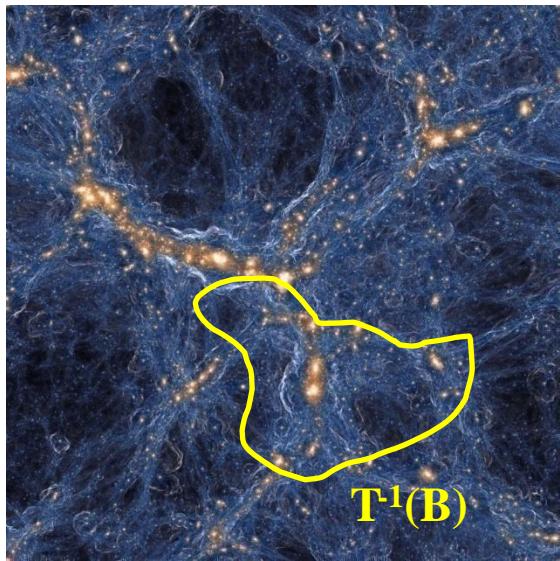
ρ



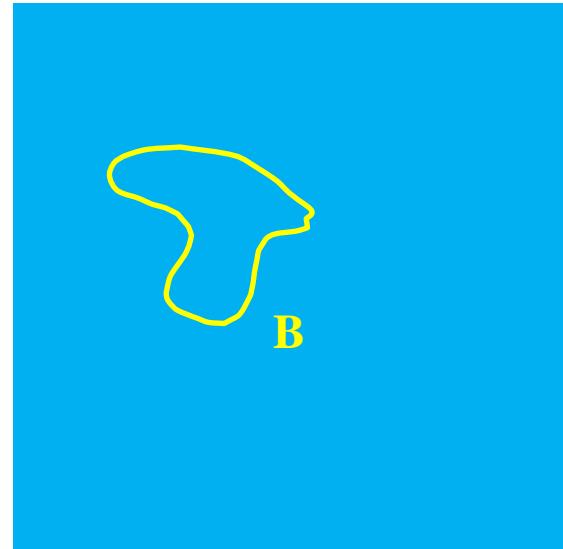
$\bar{\rho}$

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

3. Optimal Transport and Monge-Ampère



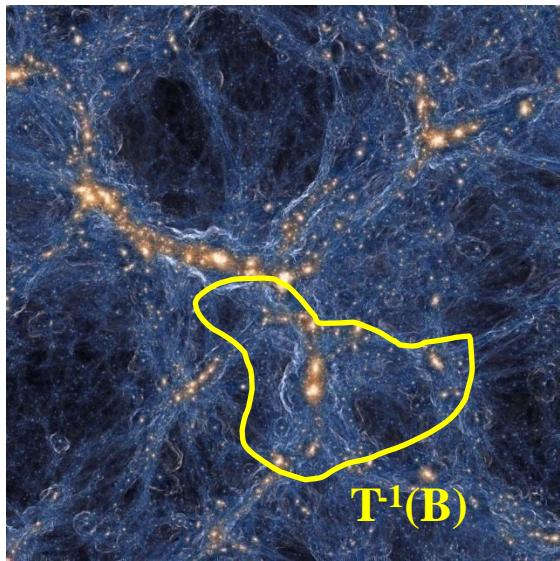
ρ



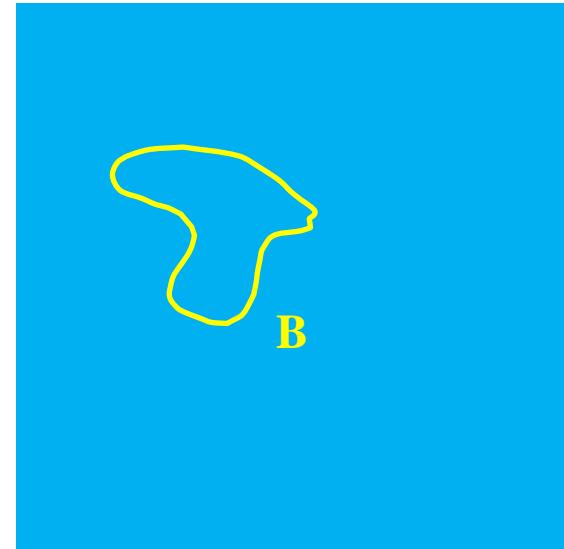
$\bar{\rho}$

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

3. Optimal Transport and Monge-Ampère



ρ



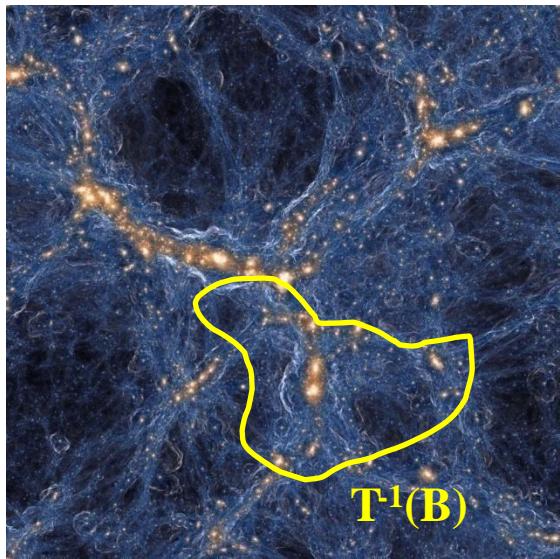
$\bar{\rho}$

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

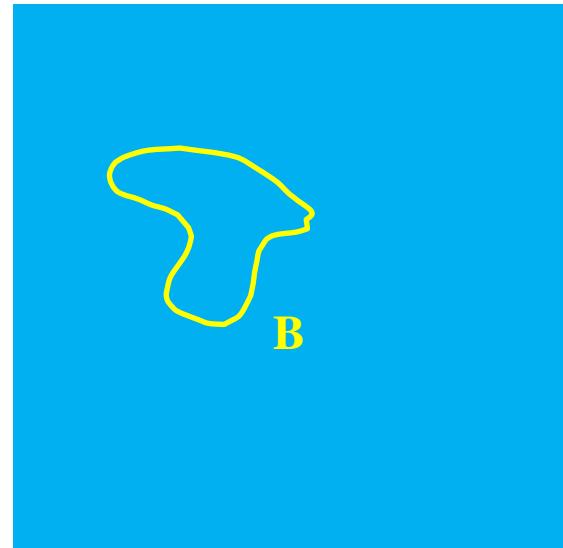
subject to:

$$\int_B \bar{\rho} d\mathbf{q} = \int_{T^{-1}(B)} \rho(\mathbf{r}) d\mathbf{r} \quad \forall B$$

3. Optimal Transport and Monge-Ampère



ρ



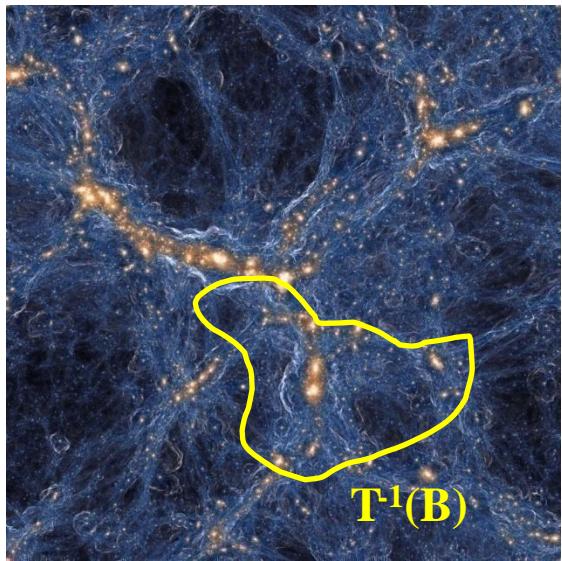
$\bar{\rho}$

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

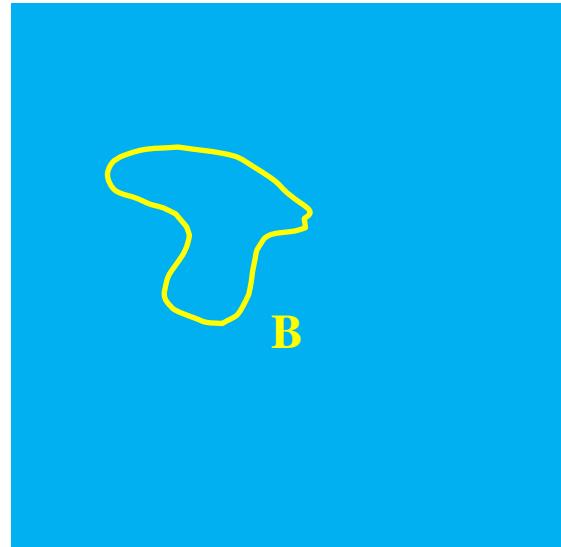
subject to:

$$\int g(\mathbf{q}) \bar{\rho} d\mathbf{q} = \int g(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \forall g$$

3. Optimal Transport and Monge-Ampère



ρ



$\bar{\rho}$

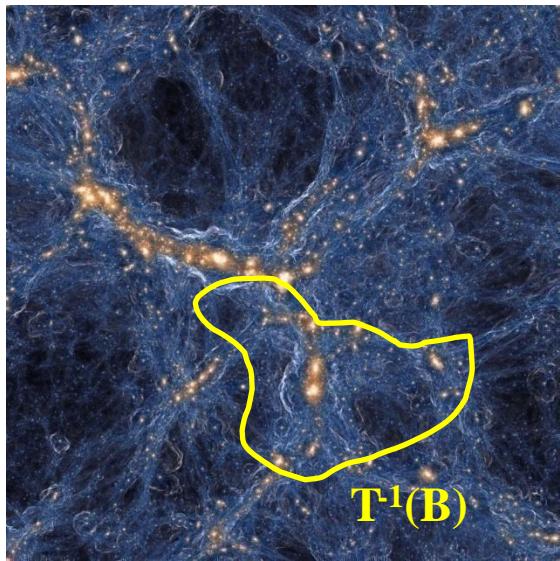
$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q}) \bar{\rho} d\mathbf{q} = \int g(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \forall g$$

$$\sup_T \inf_{\Psi} \left[\begin{array}{l} \mathcal{L}(T, \Psi) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \end{array} \right]$$

3. Optimal Transport and Monge-Ampère

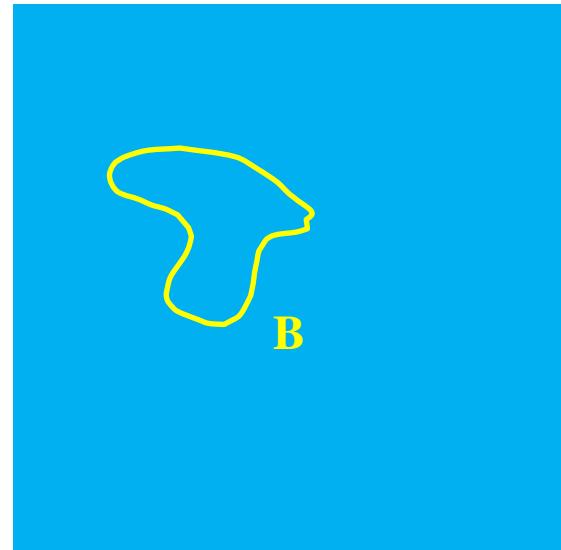


ρ

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q}) \bar{\rho} d\mathbf{q} = \int g(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \forall g$$



$\bar{\rho}$

$$\sup_T \inf_{\Psi} \left[\mathcal{L}(T, \boxed{\Psi}) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \right]$$

Lagrange multiplier associated with the constraint

3. Optimal Transport and Monge-Ampère

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q}) \bar{\rho} d\mathbf{q} = \int g(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \forall g$$

$$\sup_T \inf_{\Psi} \left[\begin{aligned} \mathcal{L}(T, \Psi) = & \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ & \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \end{aligned} \right]$$

3. Optimal Transport and Monge-Ampère

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q}) \bar{\rho} d\mathbf{q} = \int g(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \forall g$$

$$\sup_T \inf_{\Psi} \left[\begin{array}{l} \mathcal{L}(T, \Psi) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \end{array} \right]$$

Optimality conditions

3. Optimal Transport and Monge-Ampère

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q}) \bar{\rho} d\mathbf{q} = \int g(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \forall g$$

$$\sup_T \inf_{\Psi} \left[\begin{aligned} \mathcal{L}(T, \Psi) = & \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ & \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \end{aligned} \right]$$

Optimality conditions

$$\frac{\partial \mathcal{L}}{\partial T} = 0 \quad \Rightarrow \quad \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$$

3. Optimal Transport and Monge-Ampère

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q}) \bar{\rho} d\mathbf{q} = \int g(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \forall g$$

$$\sup_T \inf_{\Psi} \left[\begin{aligned} \mathcal{L}(T, \Psi) = & \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ & \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \end{aligned} \right]$$

Optimality conditions

$$\frac{\partial \mathcal{L}}{\partial T} = 0 \quad \Rightarrow \quad \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$$

$$\frac{\partial^2 \mathcal{L}}{\partial T^2} \geq 0 \quad \Rightarrow \quad \Psi \text{ is a convex function}$$

3. Optimal Transport and Monge-Ampère

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q}) \bar{\rho} d\mathbf{q} = \int g(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \forall g$$

$$\sup_T \inf_{\Psi} \left[\begin{aligned} \mathcal{L}(T, \Psi) = & \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ & \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \end{aligned} \right]$$

Optimality conditions

$$\frac{\partial \mathcal{L}}{\partial T} = 0 \Rightarrow \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$$

$$\frac{\partial^2 \mathcal{L}}{\partial T^2} \geq 0 \Rightarrow \Psi \text{ is a convex function}$$

$$T(\mathbf{r}) = \nabla \Phi(\mathbf{r}), \quad \text{where:}$$

$$\Phi(\mathbf{r}) = \Psi^*(\mathbf{r}) = \inf_{\mathbf{q}} [\mathbf{q} \cdot \mathbf{r} - \Psi(\mathbf{q})]$$

3. Optimal Transport and Monge-Ampère

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q}) \bar{\rho} d\mathbf{q} = \int g(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \forall g$$

$$\sup_T \inf_{\Psi} \left[\begin{aligned} \mathcal{L}(T, \Psi) = & \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ & \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \end{aligned} \right]$$

Optimality conditions

$$\frac{\partial \mathcal{L}}{\partial T} = 0 \Rightarrow \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$$

$$\frac{\partial^2 \mathcal{L}}{\partial T^2} \geq 0 \Rightarrow \Psi \text{ is a convex function}$$

$$T(\mathbf{r}) = \nabla \Phi(\mathbf{r}), \quad \text{where:}$$

$$\Phi(\mathbf{r}) = \Psi^*(\mathbf{r}) = \inf_{\mathbf{q}} [\mathbf{q} \cdot \mathbf{r} - \Psi(\mathbf{q})]$$

Legendre-Fenchel dual

3. Optimal Transport and Monge-Ampère

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q}) \bar{\rho} d\mathbf{q} = \int g(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \forall g$$

$$\sup_T \inf_{\Psi} \left[\begin{aligned} \mathcal{L}(T, \Psi) = & \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ & \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \end{aligned} \right]$$

Optimality conditions

$$\frac{\partial \mathcal{L}}{\partial T} = 0 \Rightarrow \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$$

Insert into constraint:

$$\bar{\rho} \int g(\nabla \Phi(\mathbf{r})) |D^2 \Phi(\mathbf{r})| d\mathbf{r} = \int g(\nabla \Phi(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \frac{\partial^2 \mathcal{L}}{\partial T^2} \geq 0 \Rightarrow \Psi \text{ is a convex function}$$

$$T(\mathbf{r}) = \nabla \Phi(\mathbf{r}), \quad \text{where:}$$

$$\Phi(\mathbf{r}) = \Psi^*(\mathbf{r}) = \inf_{\mathbf{q}} [\mathbf{q} \cdot \mathbf{r} - \Psi(\mathbf{q})]$$

Legendre-Fenchel dual

3. Optimal Transport and Monge-Ampère

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q}) \bar{\rho} d\mathbf{q} = \int g(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \forall g$$

$$\sup_T \inf_{\Psi} \left[\begin{aligned} \mathcal{L}(T, \Psi) = & \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ & \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \end{aligned} \right]$$

Optimality conditions

$$\frac{\partial \mathcal{L}}{\partial T} = 0 \Rightarrow \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$$

Insert into constraint:

$$\bar{\rho} \int g(\nabla \Phi(\mathbf{r})) |D^2 \Phi(\mathbf{r})| d\mathbf{r} = \int g(\nabla \Phi(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \frac{\partial^2 \mathcal{L}}{\partial T^2} \geq 0 \Rightarrow \Psi \text{ is a convex function}$$

Pointwise:

$$\bar{\rho} \det D^2 \Phi = \rho(\mathbf{r})$$

$$T(\mathbf{r}) = \nabla \Phi(\mathbf{r}), \quad \text{where:}$$

$$\Phi(\mathbf{r}) = \Psi^*(\mathbf{r}) = \inf_{\mathbf{q}} [\mathbf{q} \cdot \mathbf{r} - \Psi(\mathbf{q})]$$

Legendre-Fenchel dual

3. Optimal Transport and Monge-Ampère

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q}) \bar{\rho} d\mathbf{q} = \int g(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \forall g$$

$$\sup_T \inf_{\Psi} \left[\begin{aligned} \mathcal{L}(T, \Psi) = & \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ & \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \end{aligned} \right]$$

Optimality conditions

$$\frac{\partial \mathcal{L}}{\partial T} = 0 \Rightarrow \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$$

Insert into constraint:

$$\bar{\rho} \int g(\nabla \Phi(\mathbf{r})) |D^2 \Phi(\mathbf{r})| d\mathbf{r} = \int g(\nabla \Phi(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \quad \frac{\partial^2 \mathcal{L}}{\partial T^2} \geq 0 \Rightarrow \Psi \text{ is a convex function}$$

Pointwise:

$$\bar{\rho} \det D^2 \Phi = \rho(\mathbf{r})$$

$$T(\mathbf{r}) = \nabla \Phi(\mathbf{r}), \quad \text{where:}$$

$$\Phi(\mathbf{r}) = \Psi^*(\mathbf{r}) = \inf_{\mathbf{q}} [\mathbf{q} \cdot \mathbf{r} - \Psi(\mathbf{q})]$$

Monge-Ampère equation:

$$\bar{\rho} \Delta \Phi = \rho$$

Legendre-Fenchel dual

1. Newton

$$\begin{aligned} F &= -\mathcal{G} \frac{m_1 m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \\ \left\{ \begin{array}{l} F = \nabla \phi \\ \Delta \phi = 4\pi \mathcal{G}(\rho - \bar{\rho}) \end{array} \right. \end{aligned}$$

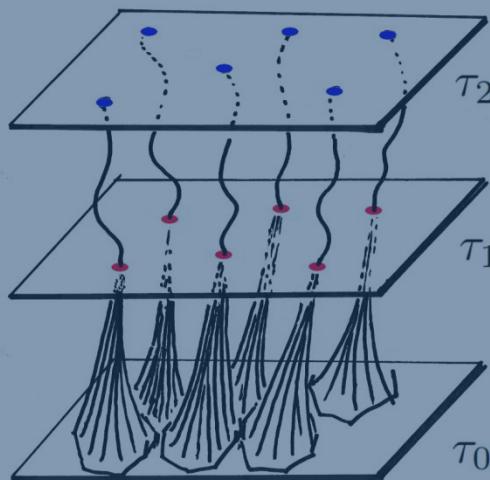
2. Brenier-Monge-Ampère

$$\left\{ \begin{array}{l} F = \nabla \Phi \\ \Delta \Phi = \frac{\rho}{\bar{\rho}} \\ \Phi = \frac{\phi}{4\pi \mathcal{G} \bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{array} \right.$$

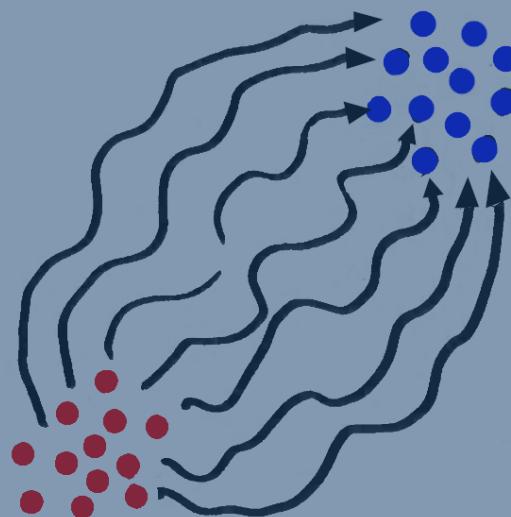
3. Optimal Transport

$$\begin{aligned} T &= \nabla \Phi \\ \inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right] \\ \text{subject to:} \\ \int_B \bar{\rho} d\mathbf{q} &= \int_{T^{-1}(B)} \rho(\mathbf{r}) d\mathbf{r} \quad \forall B \end{aligned}$$

6. The Path Bundle Method

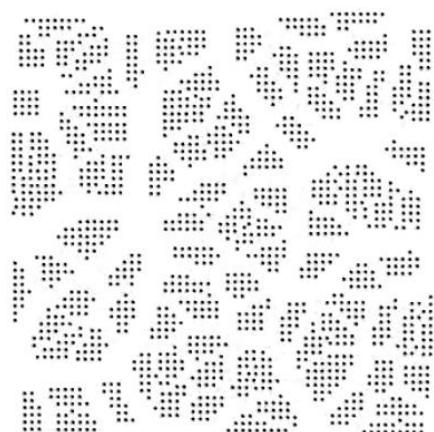


5. Large Deviations Ppl.

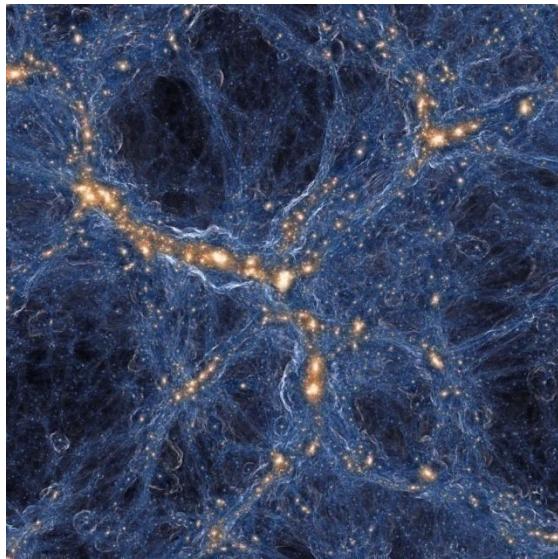


4. Discrete Optimal Transp.

$$\inf_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right]$$



4. Discrete Optimal Transport

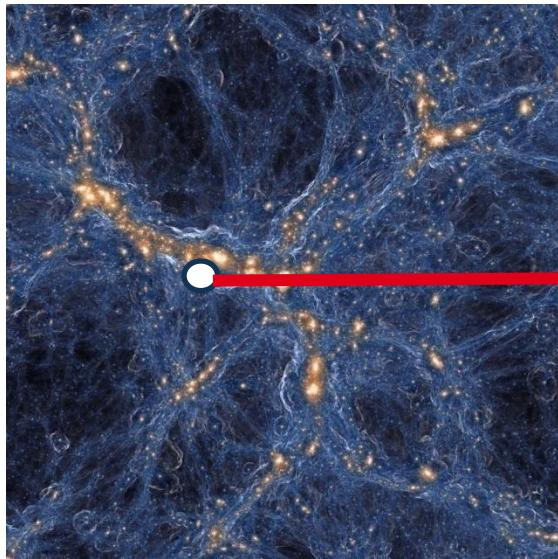


ρ

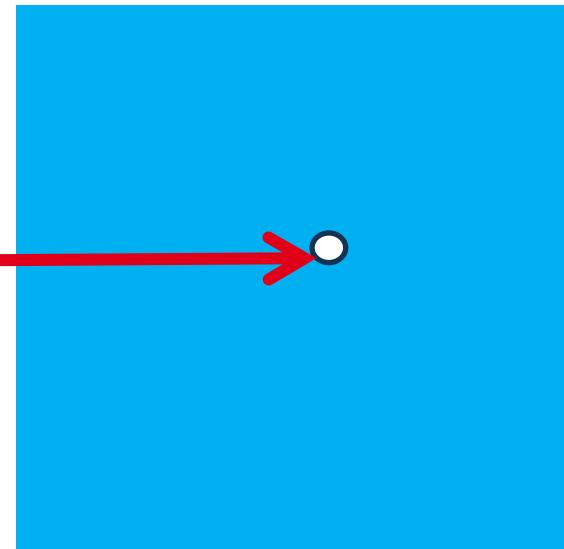
$\bar{\rho}$

$$\begin{cases} F &= \nabla \Phi \\ \Delta \Phi &= \frac{\rho}{\bar{\rho}} \\ \Phi &= \frac{\phi}{4\pi G \bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{cases}$$

4. Discrete Optimal Transport



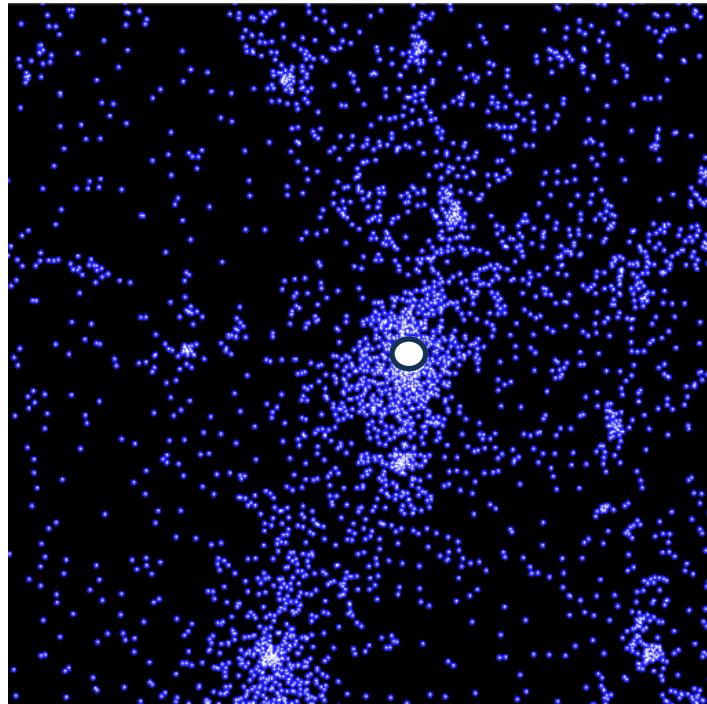
$T(r)$



$$\begin{cases} F &= \nabla \Phi \\ \Delta \Phi &= \frac{\rho}{\bar{\rho}} \\ \Phi &= \frac{\phi}{4\pi G \bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{cases}$$

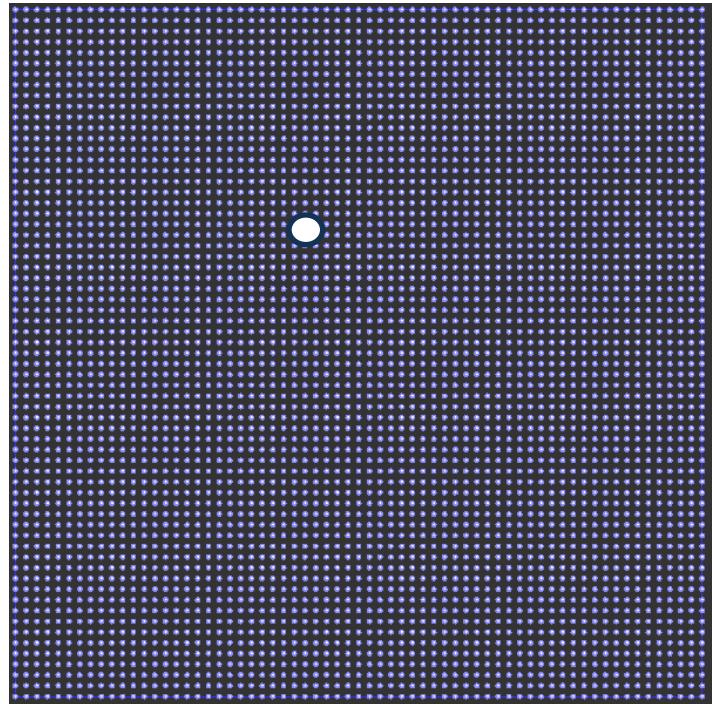
$$F = \frac{1}{4\pi G \bar{\rho}} (\mathbf{r} - T(\mathbf{r}))$$

4. Discrete Optimal Transport



$$\rho$$

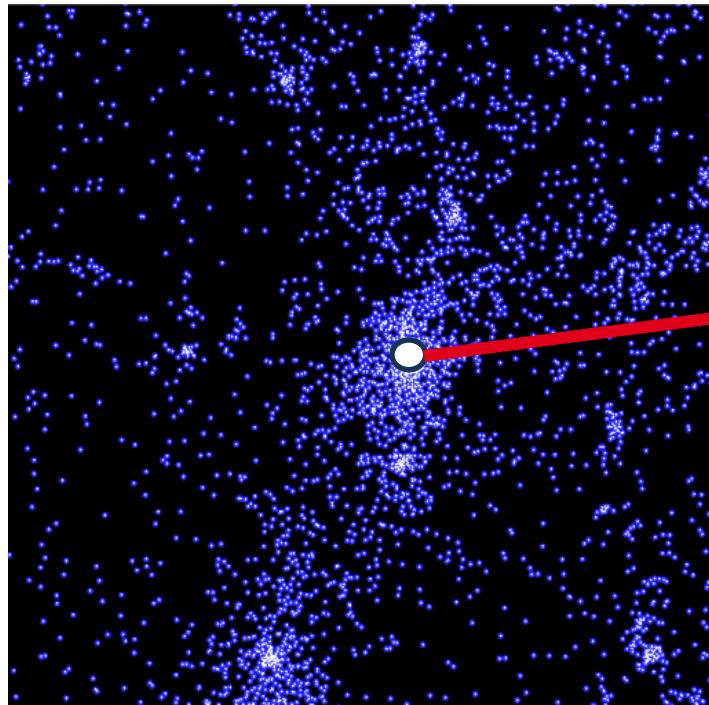
N points r_i



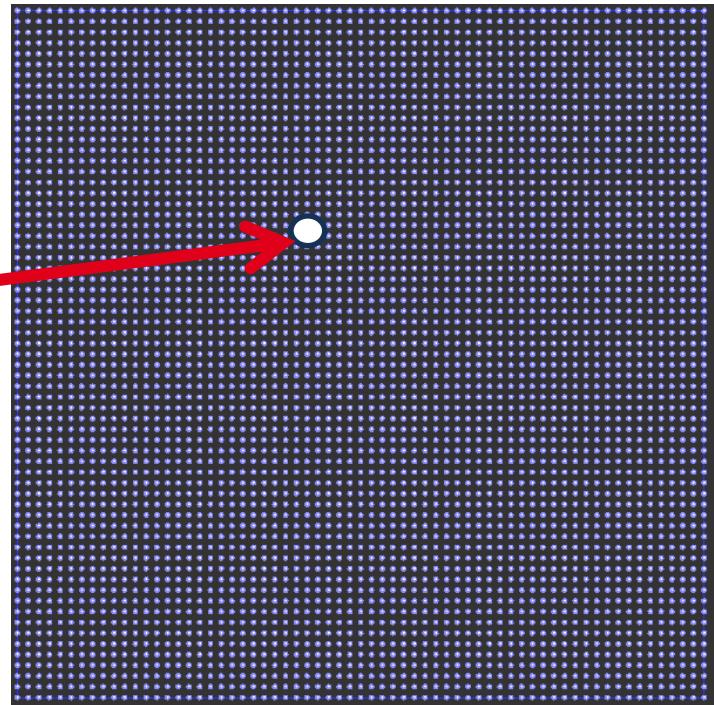
$$\bar{\rho}$$

N points q_i

4. Discrete Optimal Transport



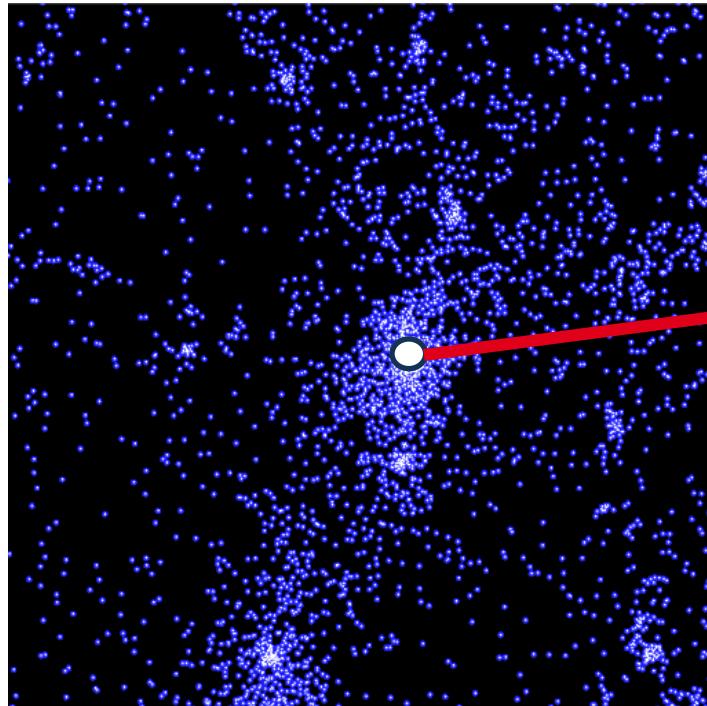
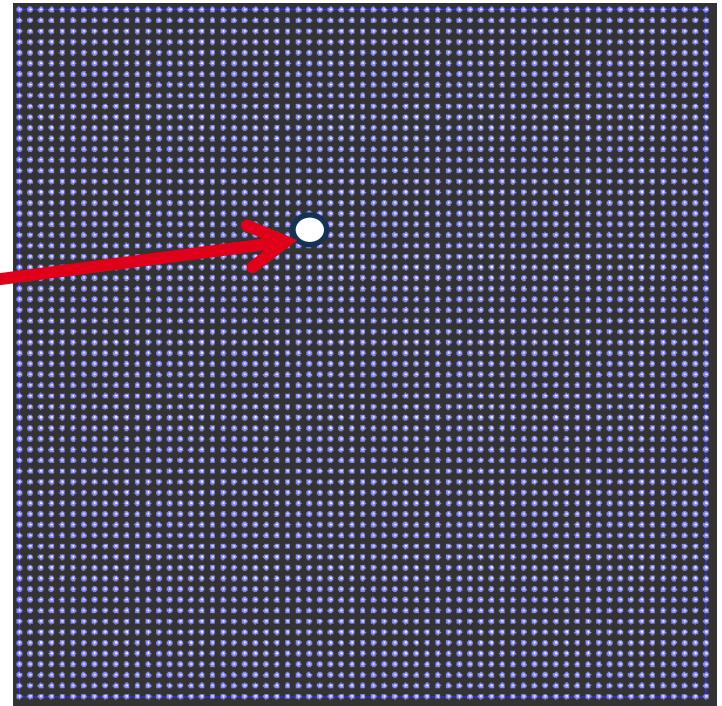
ρ



$\bar{\rho}$

$$\mathbf{T}(\mathbf{r}_i) = \mathbf{q}_{\sigma(i)}$$

4. Discrete Optimal Transport

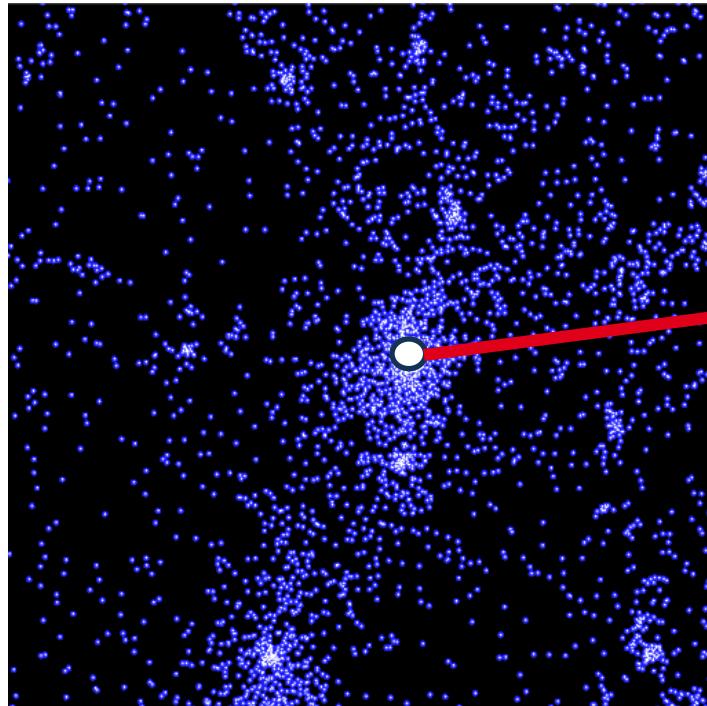
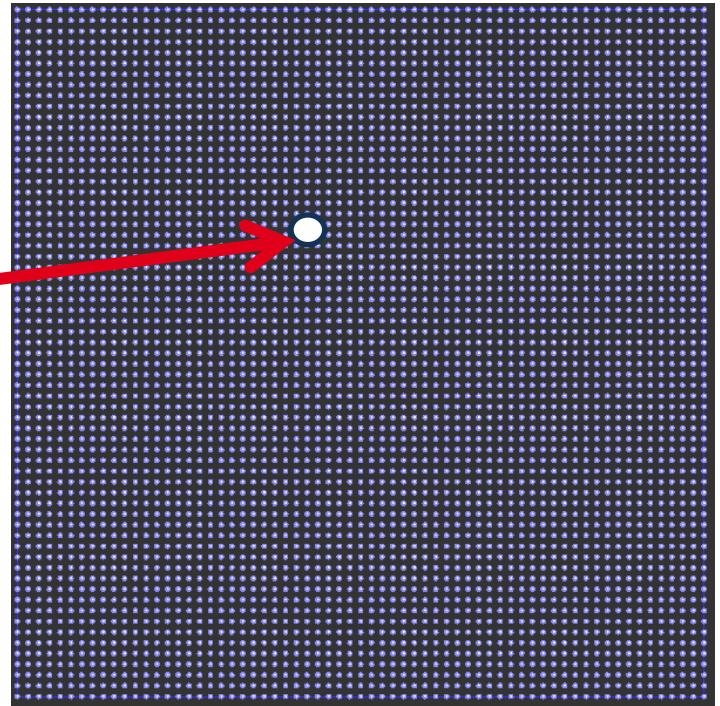
 ρ

$$\mathsf{T}(\mathbf{r}_i) = \mathbf{q}_{\sigma(i)}$$

 $\bar{\rho}$

σ : The permutation that minimizes $\left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right]$

4. Discrete Optimal Transport



$$\rho$$

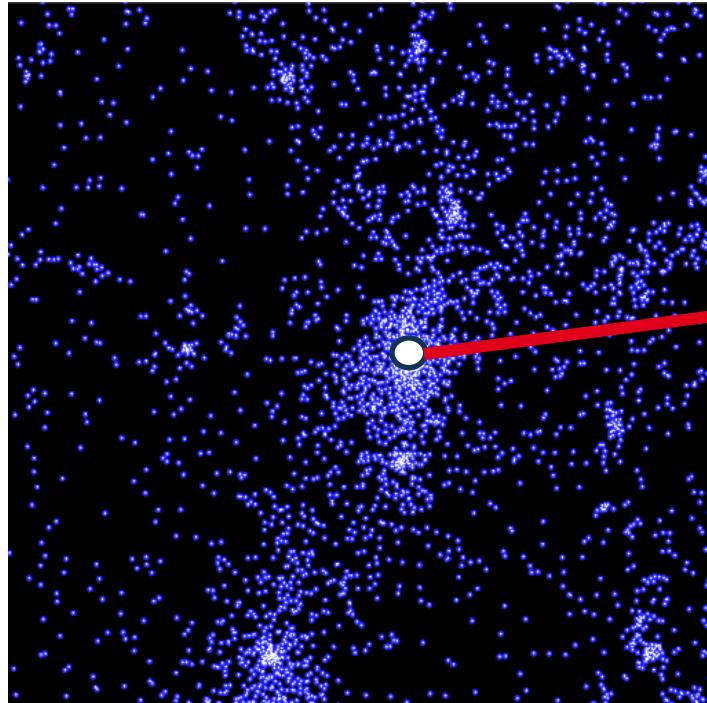
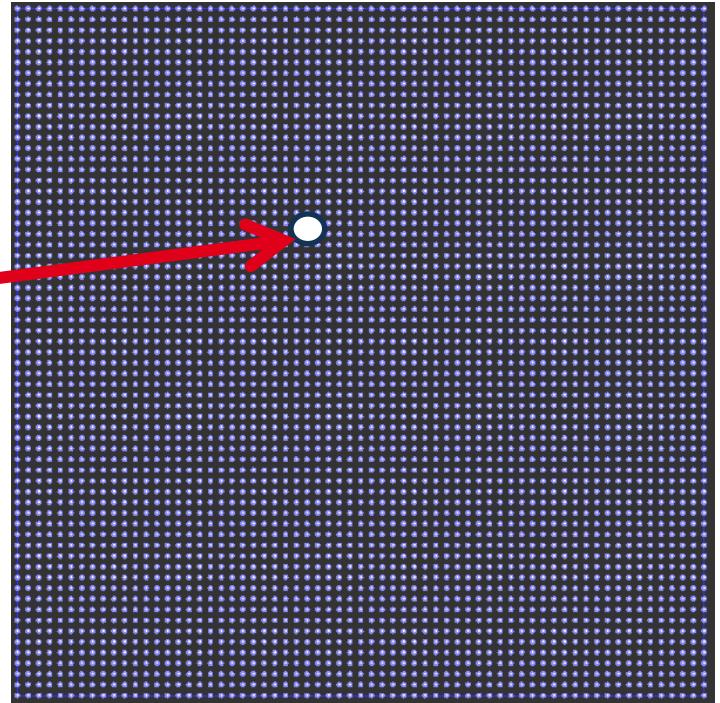
$$T(\mathbf{r}_i) = \mathbf{q}_{\sigma(i)}$$

$$\bar{\rho}$$

σ : The permutation that minimizes $\left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right]$

$$F = \frac{1}{4\pi G \bar{\rho}} (\mathbf{r} - T(\mathbf{r}))$$

4. Discrete Optimal Transport



$$\rho$$

$$\mathsf{T}(\mathbf{r}_i) = \mathbf{q}_{\sigma(i)}$$

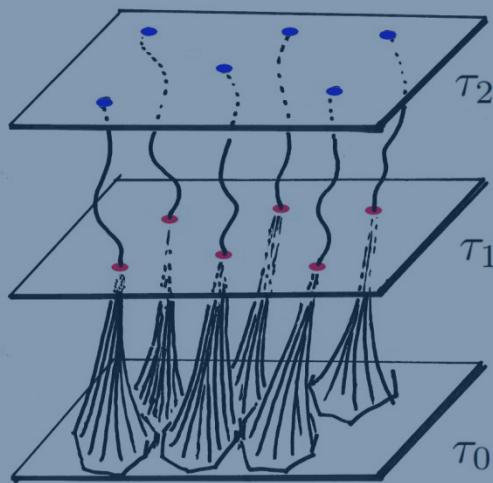
$$\bar{\rho}$$

$$\sigma : \text{The permutation that minimizes} \left[\left| \mathbf{r}_i - \mathbf{q}_{\sigma(i)} \right|^2 \right]$$

$$F_i = \frac{1}{4\pi G \bar{\rho}} (\mathbf{r}_i - \mathbf{q}_{\sigma(i)})$$

1. Newton

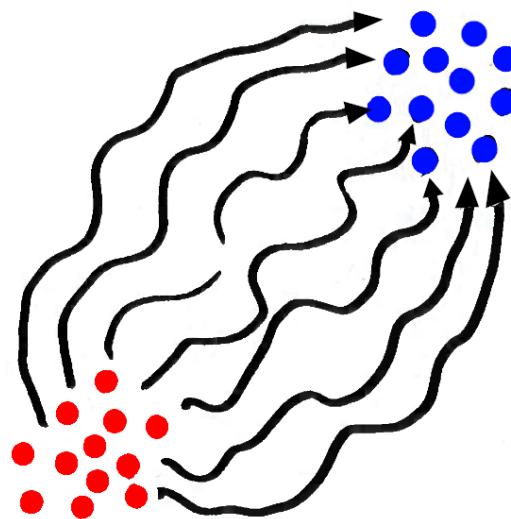
$$\begin{aligned} F &= -\mathcal{G} \frac{m_1 m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \\ \left\{ \begin{array}{l} F = \nabla \phi \\ \Delta \phi = 4\pi \mathcal{G}(\rho - \bar{\rho}) \end{array} \right. \end{aligned}$$



2. Brenier-Monge-Ampère

$$\left\{ \begin{array}{l} F = \nabla \Phi \\ \Delta \Phi = \frac{\rho}{\bar{\rho}} \\ \Phi = \frac{\phi}{4\pi \mathcal{G} \bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{array} \right.$$

5. Large Deviations Ppl.



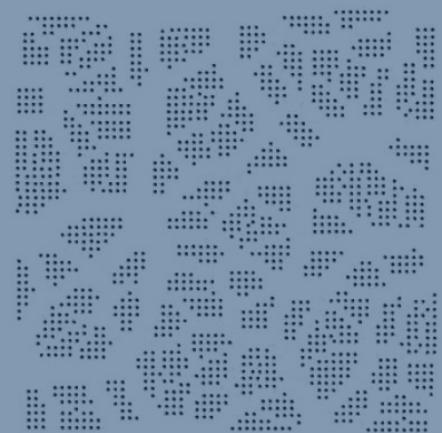
3. Optimal Transport

$$\begin{aligned} T &= \nabla \Phi \\ \inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right] \\ \text{subject to:} \end{aligned}$$

$$\int_B \bar{\rho} d\mathbf{q} = \int_{T^{-1}(B)} \rho(\mathbf{r}) d\mathbf{r} \quad \forall B$$

4. Discrete Optimal Transp.

$$\inf_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right]$$



5. Large Deviation Principle

$$F_i = \frac{1}{4\pi G \bar{\rho}} (\mathbf{r}_i - \mathbf{q}_{\sigma(i)})$$

σ : The permutation that minimizes $\left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right]$

5. Large Deviation Principle

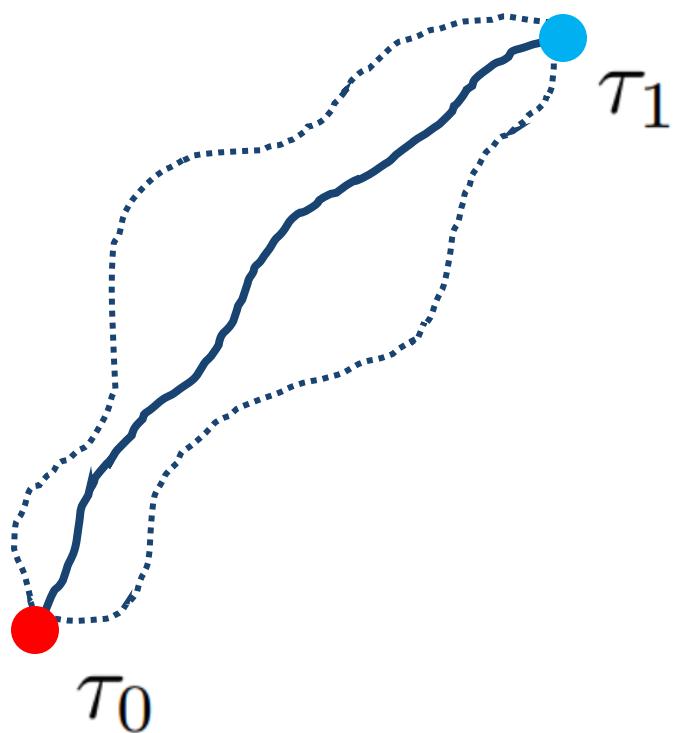
$$F_i = \frac{1}{4\pi G \bar{\rho}} (\mathbf{r}_i - \mathbf{q}_{\sigma(i)})$$

σ : The permutation that minimizes $\left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right]$

Why ?

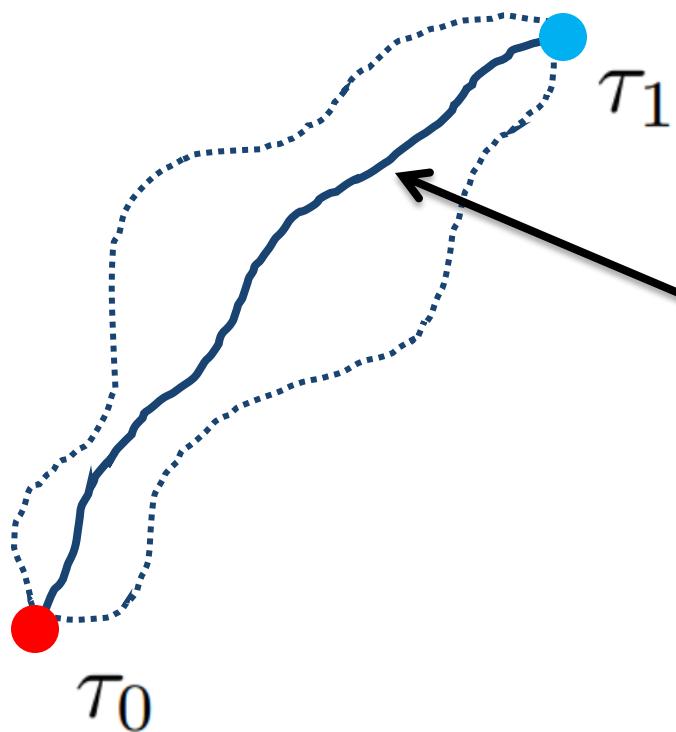
Can we *deduce* this formula from something else ?

5. Large Deviation Principle



Idea has similarities
with *least action*

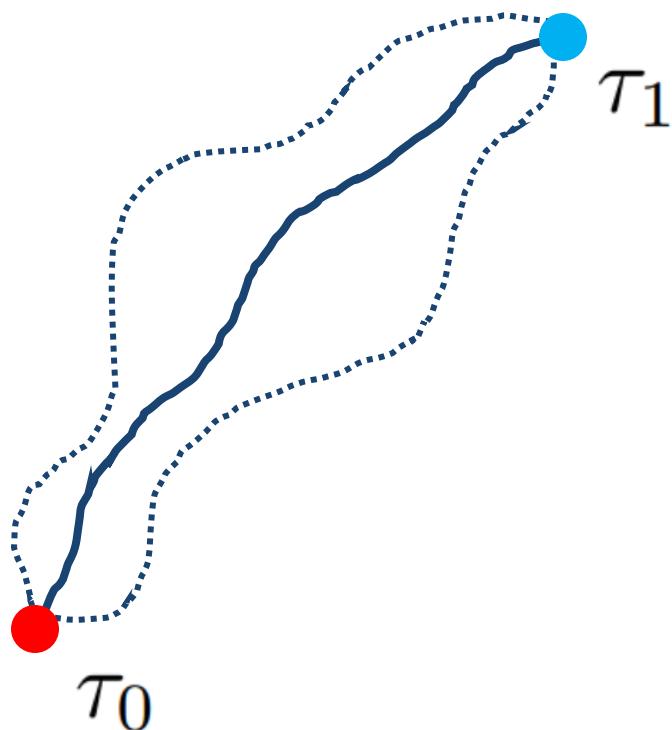
5. Large Deviation Principle



Idea has similarities
with ***least action***

Extremize action between
fixed initial and final conditions.

5. Large Deviation Principle

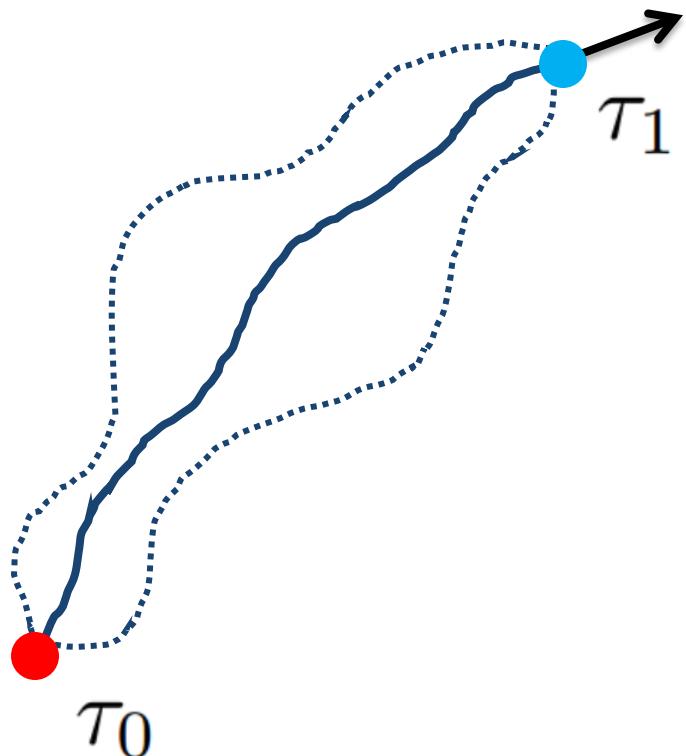


Idea has similarities
with ***least action***

Extremize action between
fixed initial and final conditions.

Deduce law of motion
(differential relation)

5. Large Deviation Principle



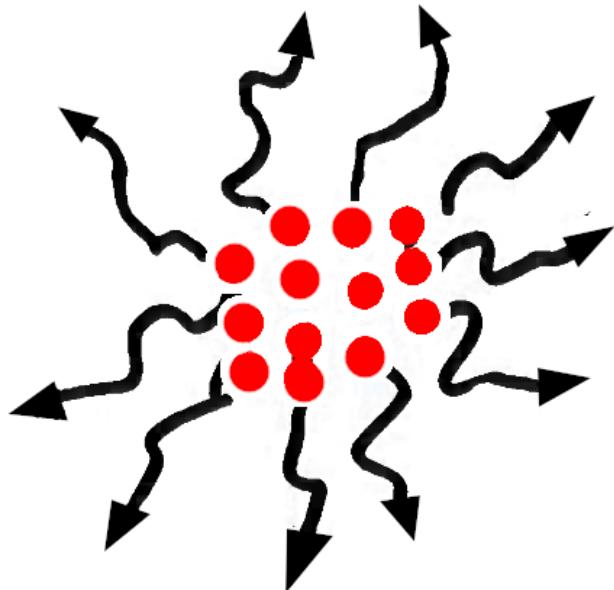
Idea has similarities
with ***least action***

Extremize action between
fixed initial and final conditions.

Deduce law of motion
(differential relation)

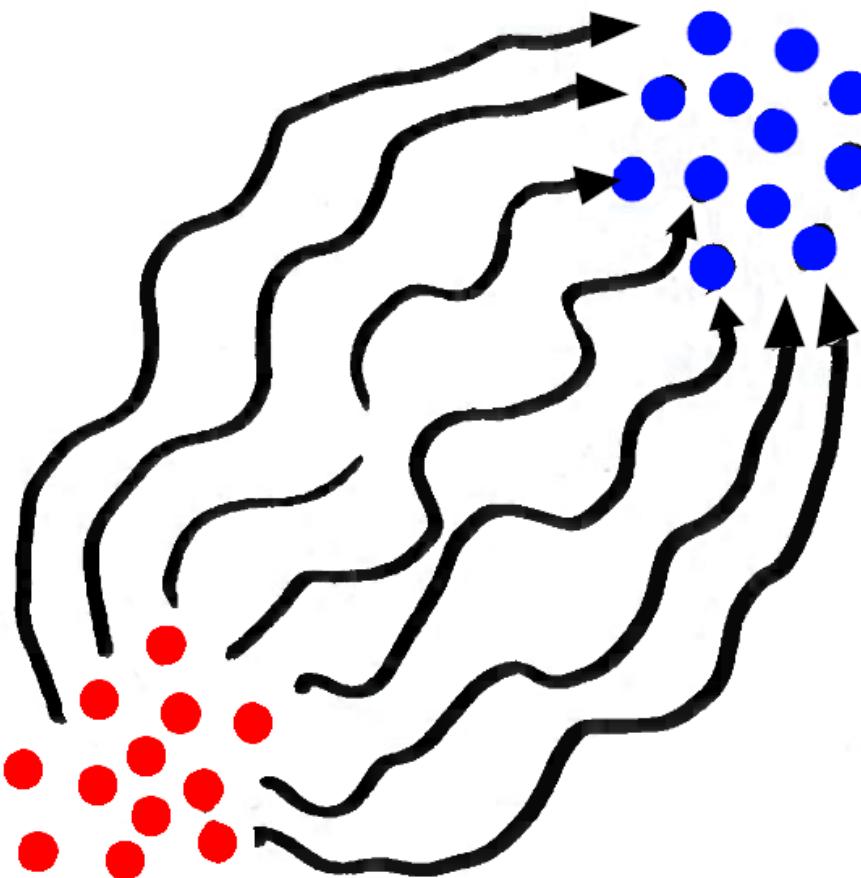
Extrapolate it

5. Large Deviation Principle



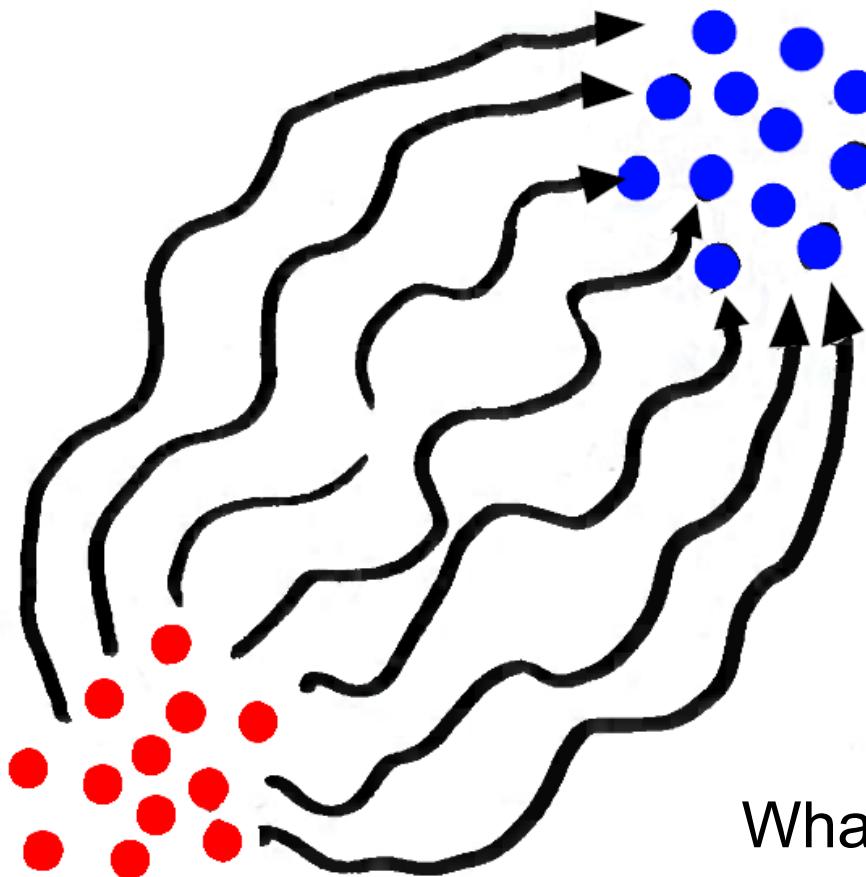
M ***indistinguishable*** particles
Independent Brownian motion
No interaction

5. Large Deviation Principle



We suppose that we observe them here after T seconds

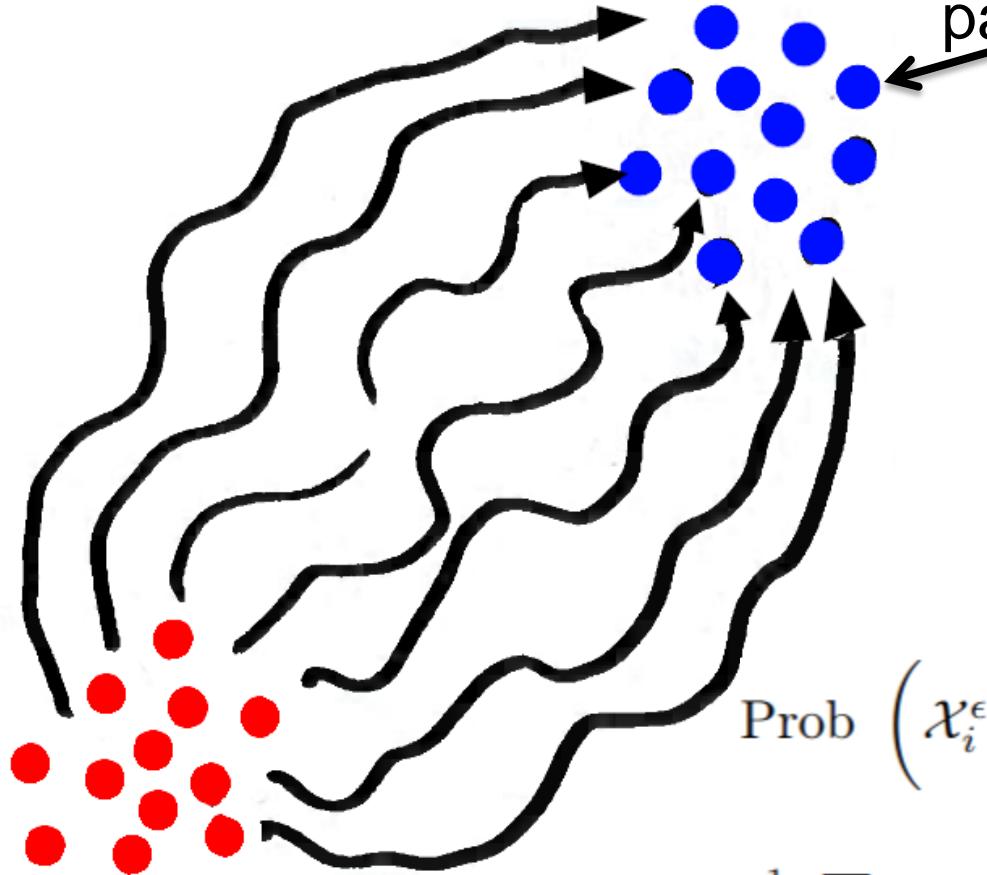
5. Large Deviation Principle



What is the “most probable” motion that accounts for the observation ?

5. Large Deviation Principle

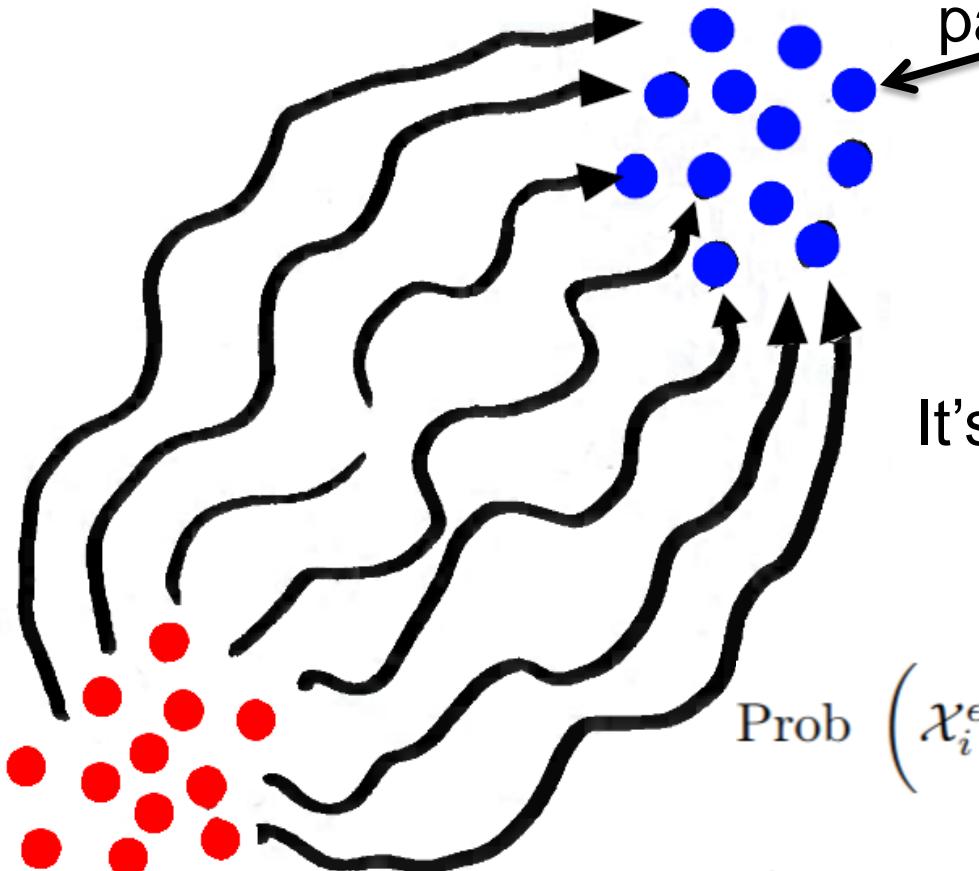
Probability of observing the particles here after T seconds:



$$\text{Prob} \left(\mathcal{X}_i^\epsilon(T) \underset{\text{perm}}{\approx} Y \right) \approx$$

$$\frac{1}{M!} \sum_{\sigma \in S_M} \exp \left[\frac{-\sum_i |Y_{\sigma(i)} - X_i^0|^2}{2\epsilon T} \right] (2\pi\epsilon T)^{-\frac{3M}{2}}$$

5. Large Deviation Principle



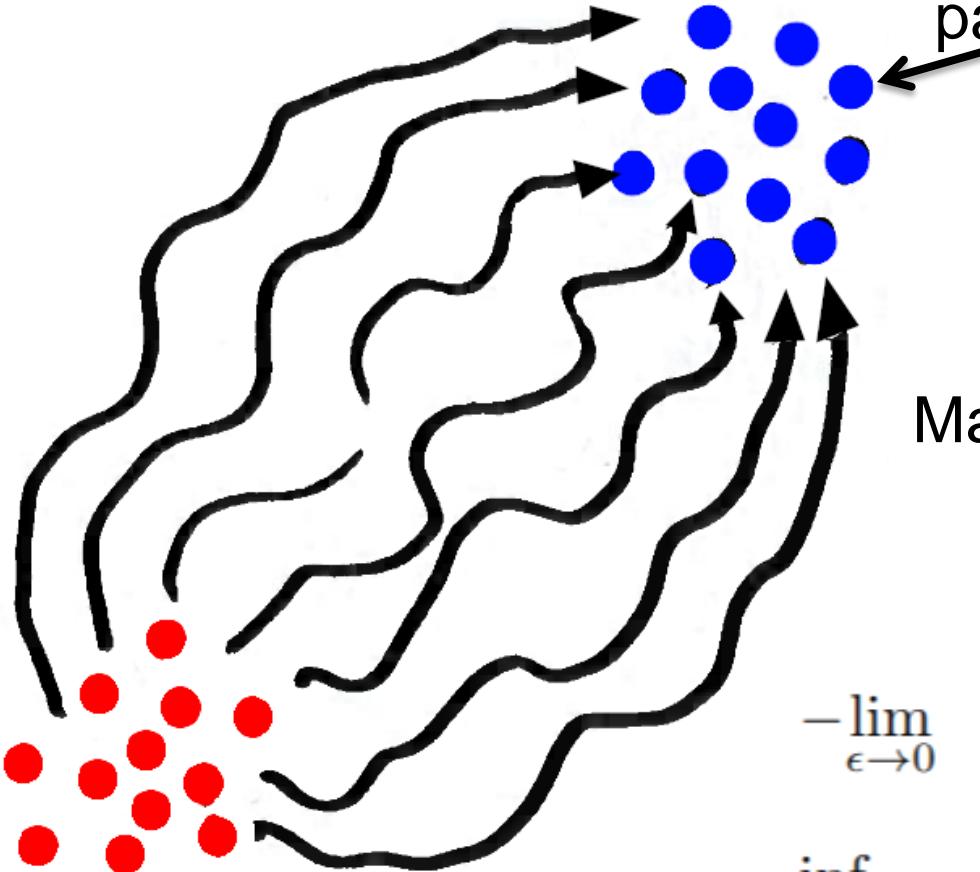
Probability of observing the particles here after T seconds:

It's a soft inf !

$$\text{Prob} \left(\mathcal{X}_i^\epsilon(T) \underset{\text{perm}}{\approx} Y \right) \approx$$

$$\frac{1}{M!} \sum_{\sigma \in S_M} \exp \left[\frac{-\sum_i |Y_{\sigma(i)} - X_i^0|^2}{2\epsilon T} \right] (2\pi\epsilon T)^{-\frac{3M}{2}}$$

5. Large Deviation Principle

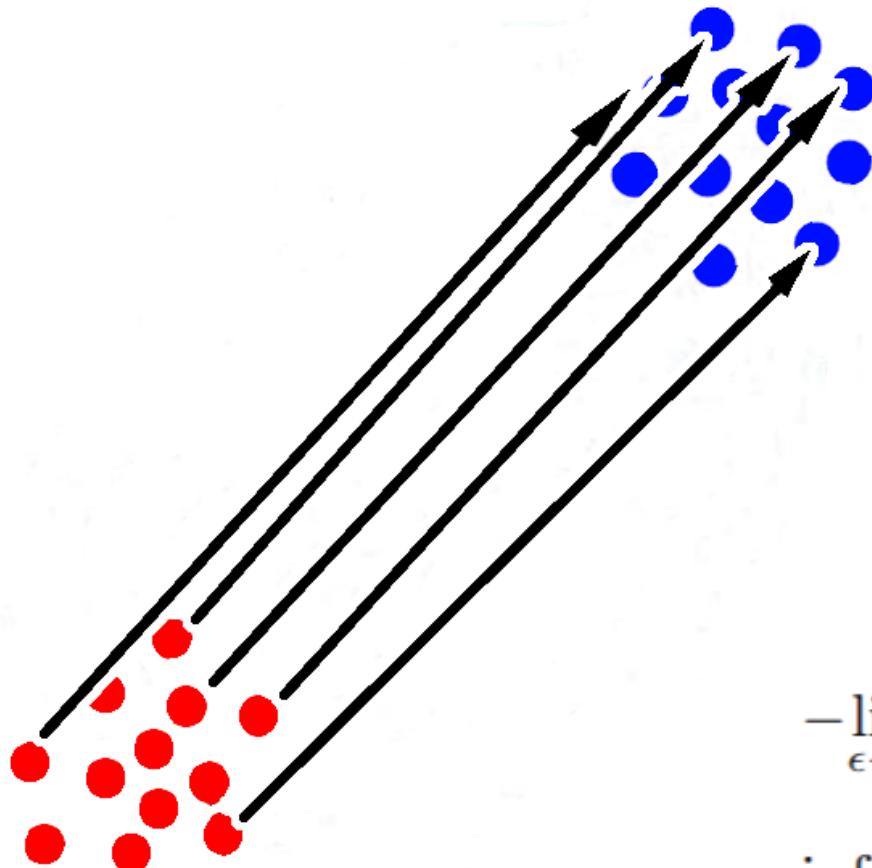


Probability of observing the particles here after T seconds:

Make “temperature” ϵ tend to 0:

$$-\lim_{\epsilon \rightarrow 0} \epsilon \log \text{Prob} \left[\mathcal{X}_i^\epsilon(T) \underset{\text{perm}}{\approx} Y \right] \approx \inf_{\sigma \in S_N} \left[\frac{\sum_i |Y_{\sigma(i)} - X_i^0|^2}{2T} \right]$$

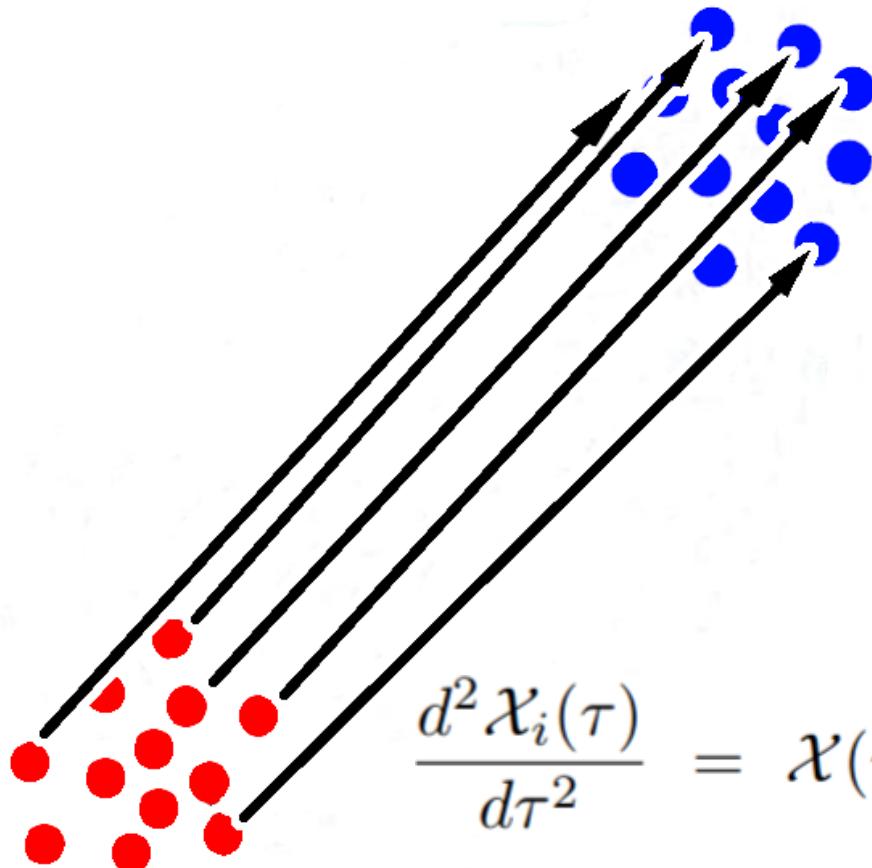
5. Large Deviation Principle



Trajectories become geodesics

$$-\lim_{\epsilon \rightarrow 0} \epsilon \log \text{Prob} \left[\mathcal{X}_i^\epsilon(T) \underset{\text{perm}}{\approx} Y \right] \approx \inf_{\sigma \in S_N} \left[\frac{\sum_i |Y_{\sigma(i)} - X_i^0|^2}{2T} \right]$$

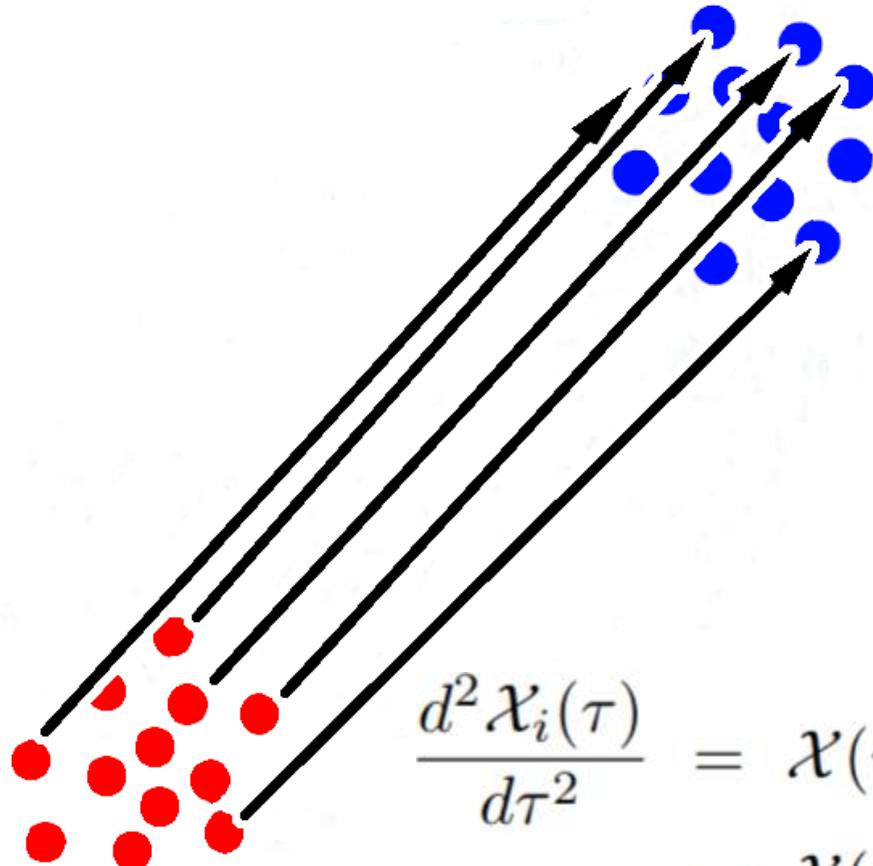
5. Large Deviation Principle



Along these geodesics:

$$\frac{d^2 \mathcal{X}_i(\tau)}{d\tau^2} = \mathcal{X}(\tau) - \mathbf{q}_{(\sigma|\mathcal{X}(\tau))(i)}$$

5. Large Deviation Principle



Along these geodesics:

$$\begin{aligned}\frac{d^2 \mathcal{X}_i(\tau)}{d\tau^2} &= \mathcal{X}(\tau) - \mathbf{q}_{(\sigma|\mathcal{X}(\tau))(i)} \\ &= \mathcal{X}(\tau) - \nabla \Phi(\mathcal{X}(t)) = -\nabla \phi(\mathcal{X}(\tau))\end{aligned}$$

1. Newton

$$\begin{aligned} F &= -\mathcal{G} \frac{m_1 m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \\ \left\{ \begin{array}{lcl} F &= \nabla \phi \\ \Delta \phi &= 4\pi \mathcal{G}(\rho - \bar{\rho}) \end{array} \right. \end{aligned}$$

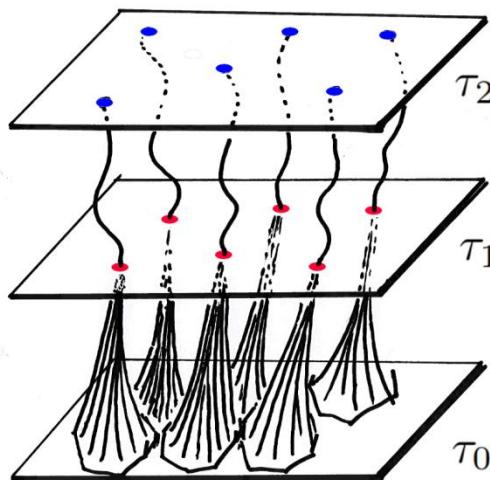
2. Brenier-Monge-Ampère

$$\left\{ \begin{array}{lcl} F &= \nabla \Phi \\ \Delta \Phi &= \frac{\rho}{\bar{\rho}} \\ \Phi &= \frac{\phi}{4\pi \mathcal{G} \bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{array} \right.$$

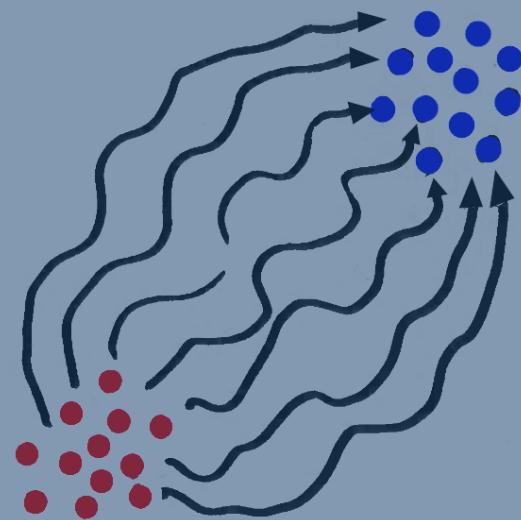
3. Optimal Transport

$$\begin{aligned} T &= \nabla \Phi \\ \inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right] \\ \text{subject to:} \\ \int_B \bar{\rho} d\mathbf{q} &= \int_{T^{-1}(B)} \rho(\mathbf{r}) d\mathbf{r} \quad \forall B \end{aligned}$$

6. The Path Bundle Method

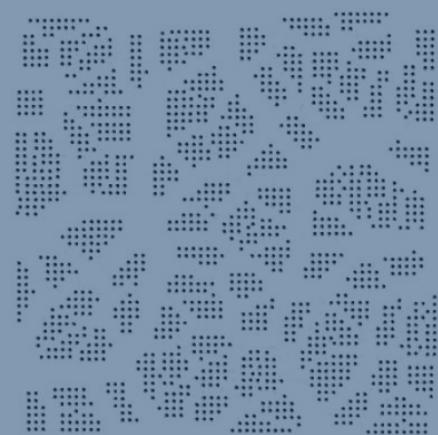


5. Large Deviations Ppl.

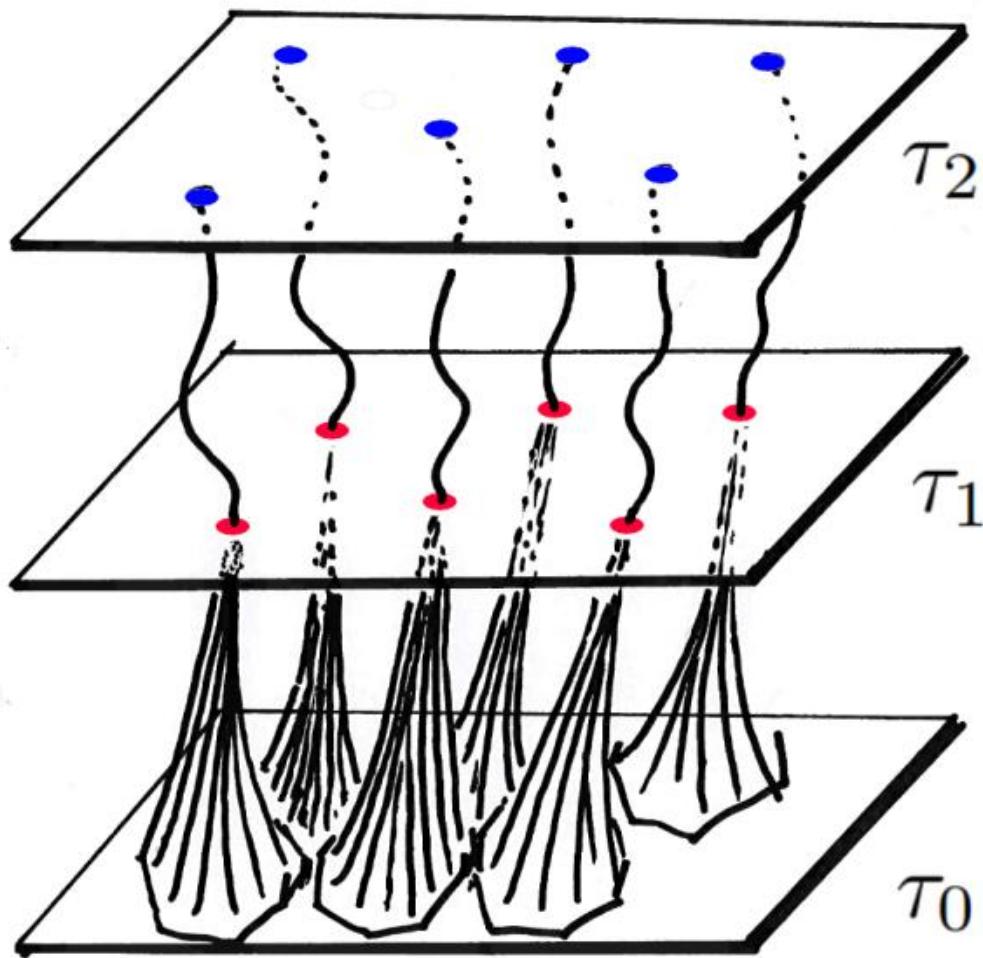


4. Discrete Optimal Transp.

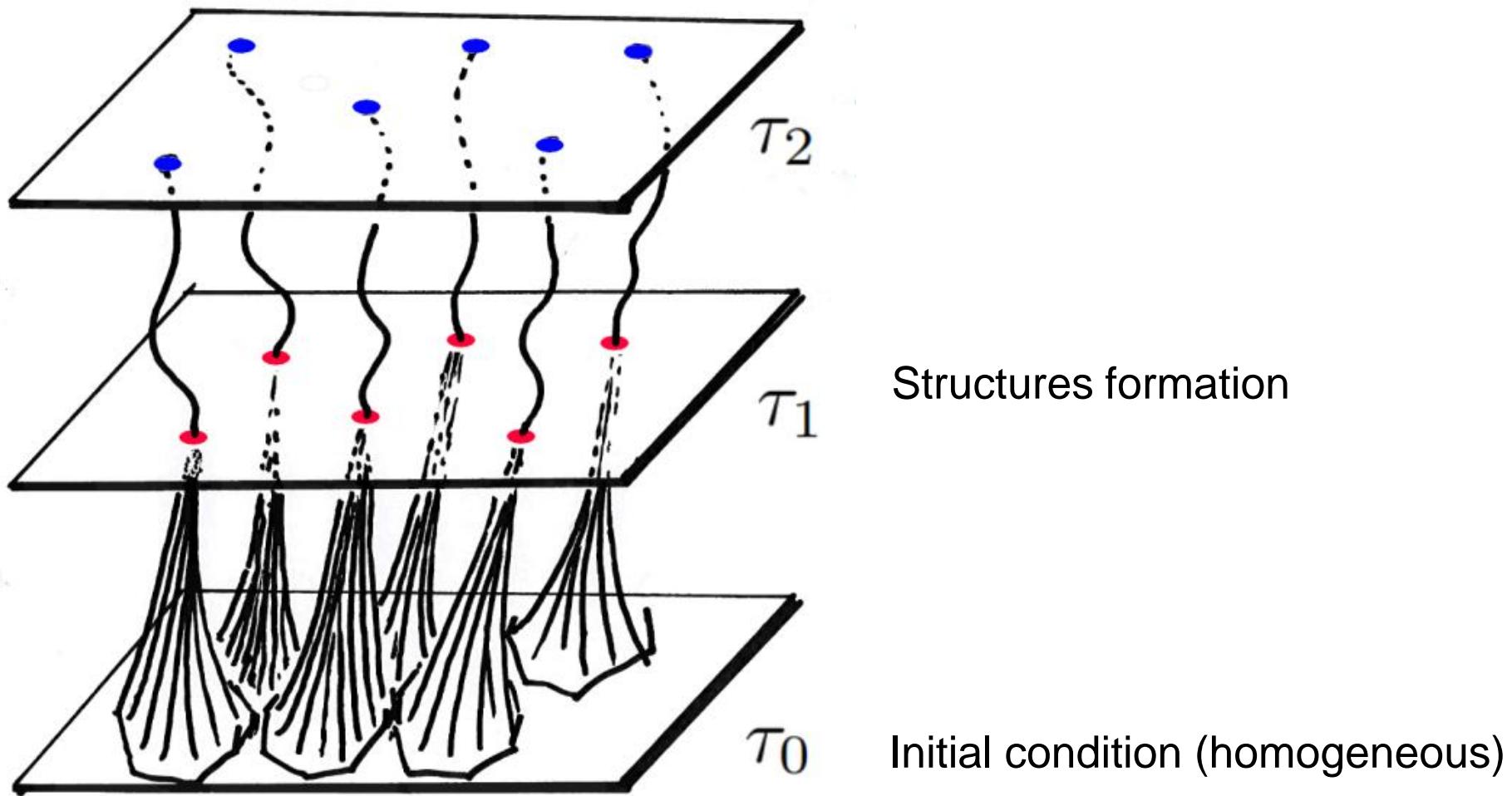
$$\inf_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right]$$



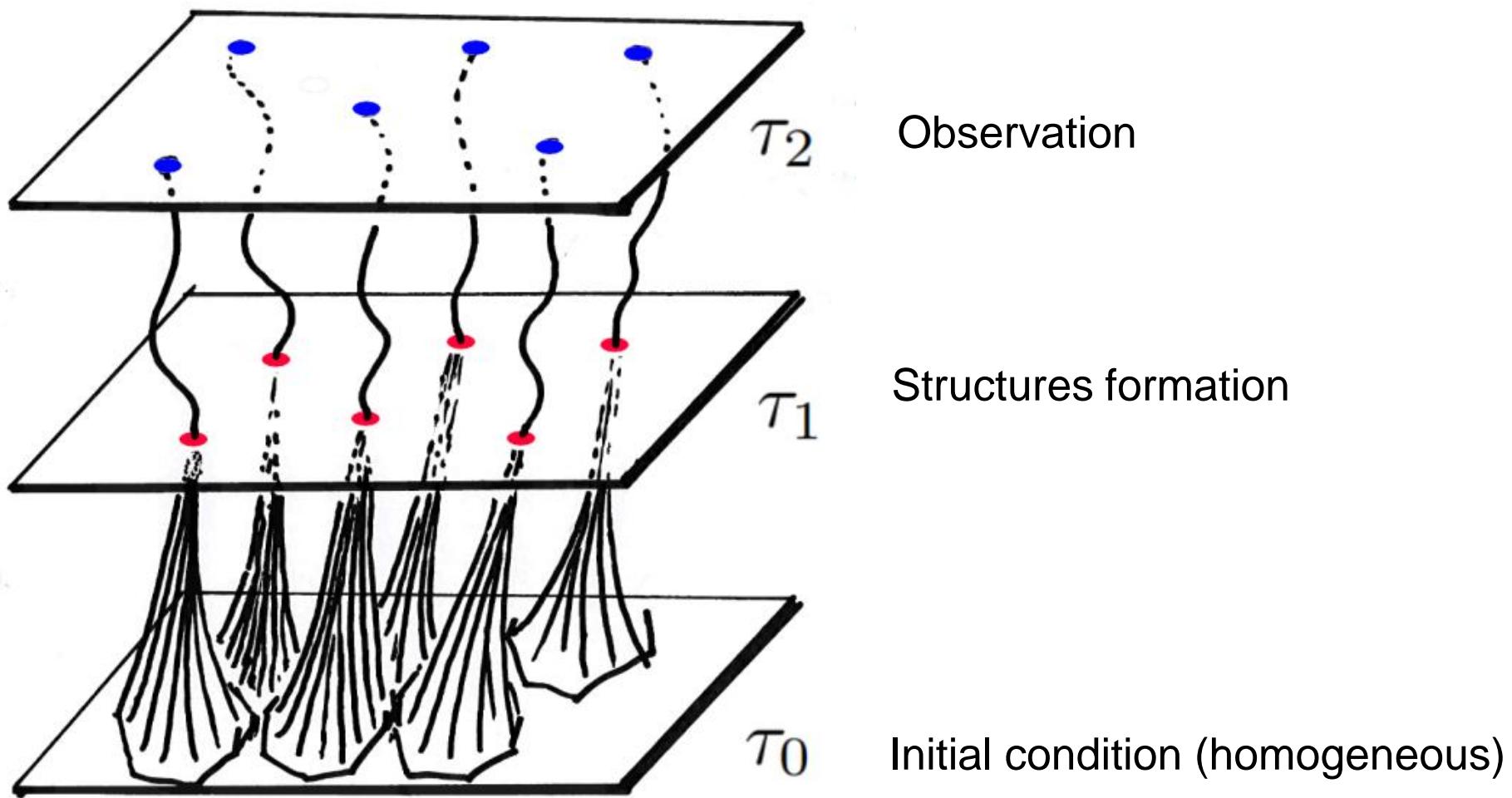
6. The Path Bundle Method



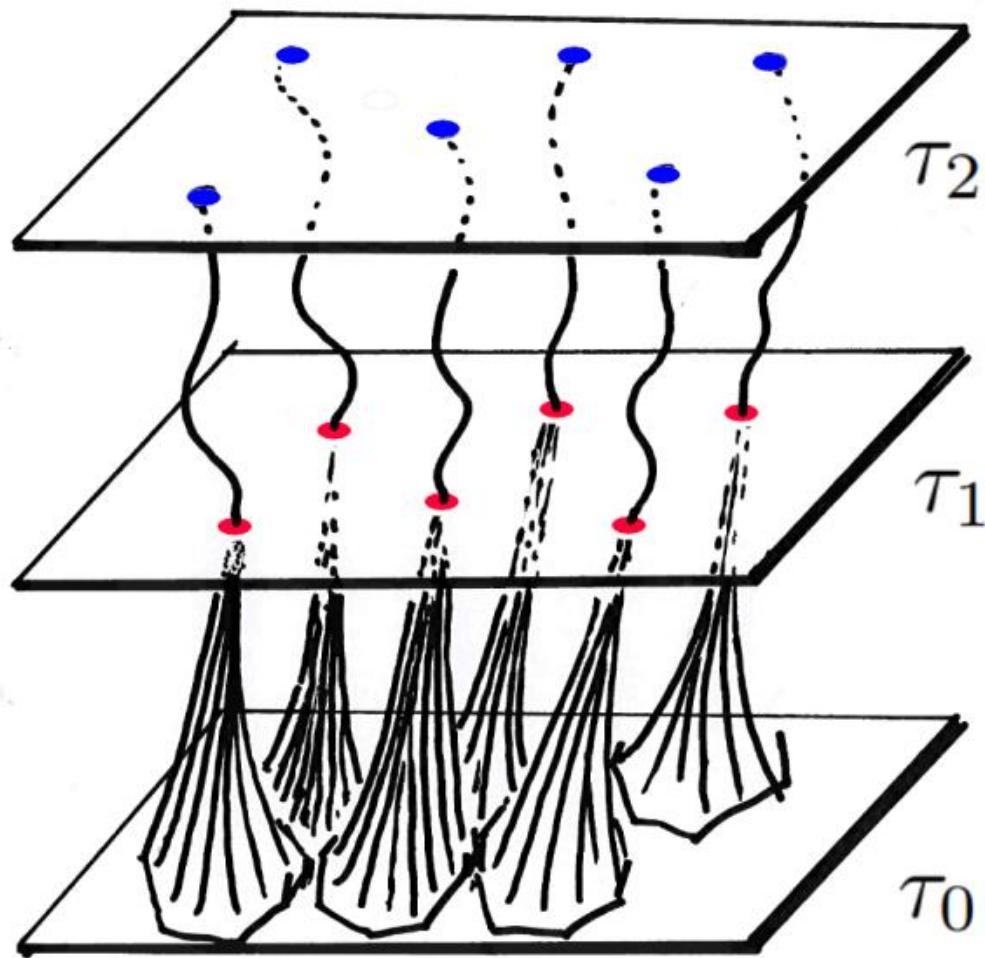
6. The Path Bundle Method



6. The Path Bundle Method

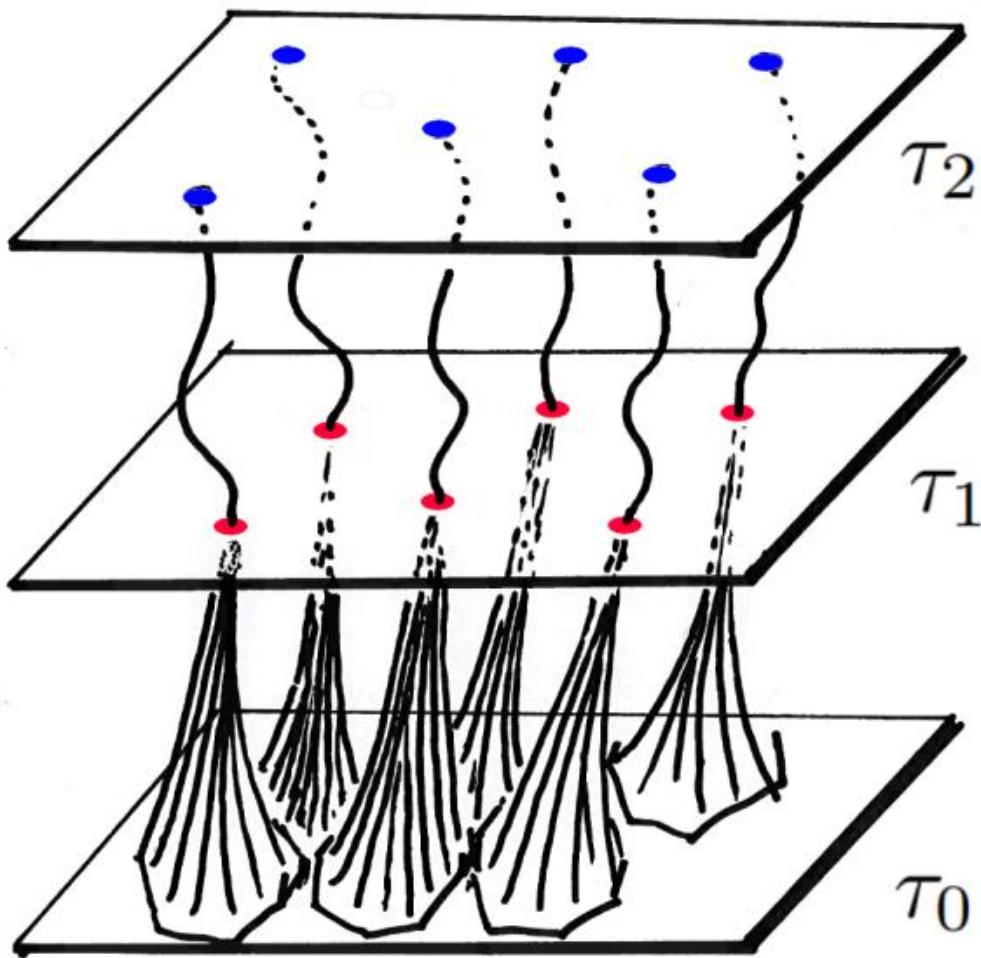


6. The Path Bundle Method



$$\frac{d^2 \mathbf{r}_i(\tau)}{d\tau^2} = F_i(\tau)$$

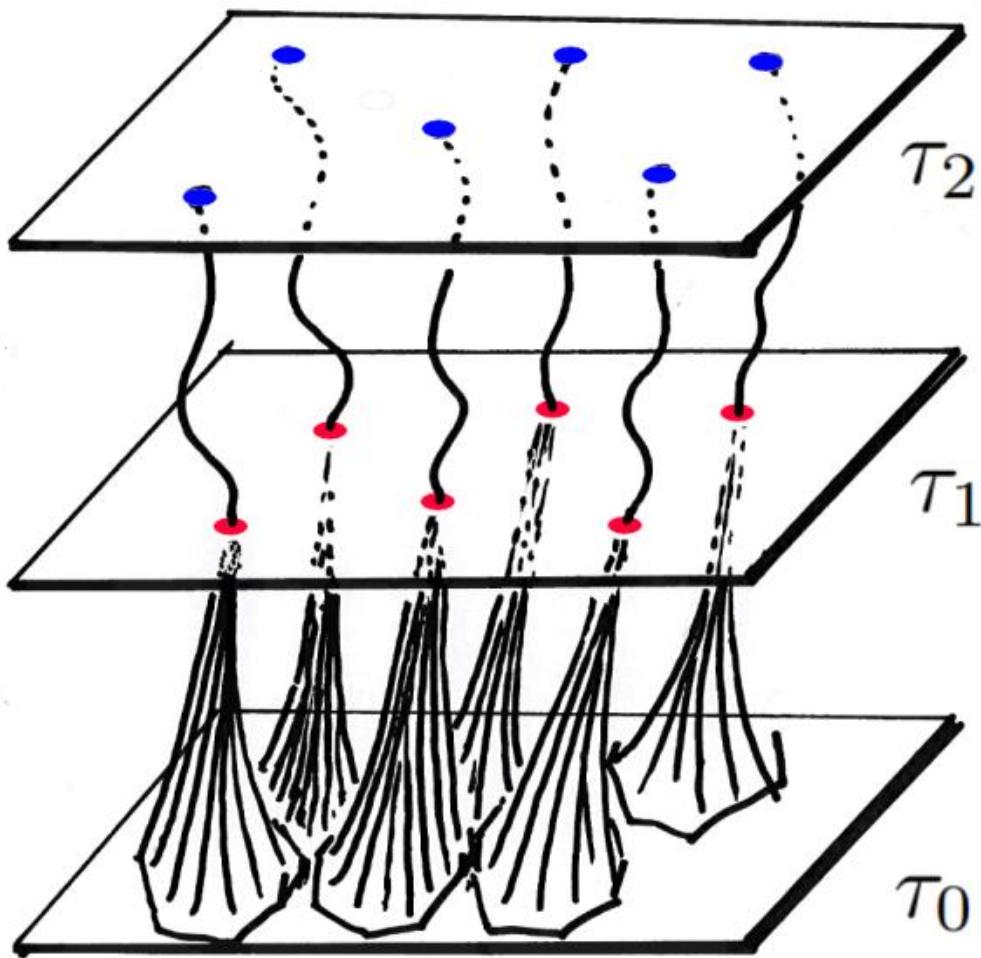
6. The Path Bundle Method



$$\frac{d^2 \mathbf{r}_i(\tau)}{d\tau^2} = F_i(\tau)$$

$$\begin{aligned} F_i(\tau) &= -\nabla \phi(\tau) \\ &= \mathbf{r}_i - \nabla \Phi(\mathbf{r}_i, \tau) \end{aligned}$$

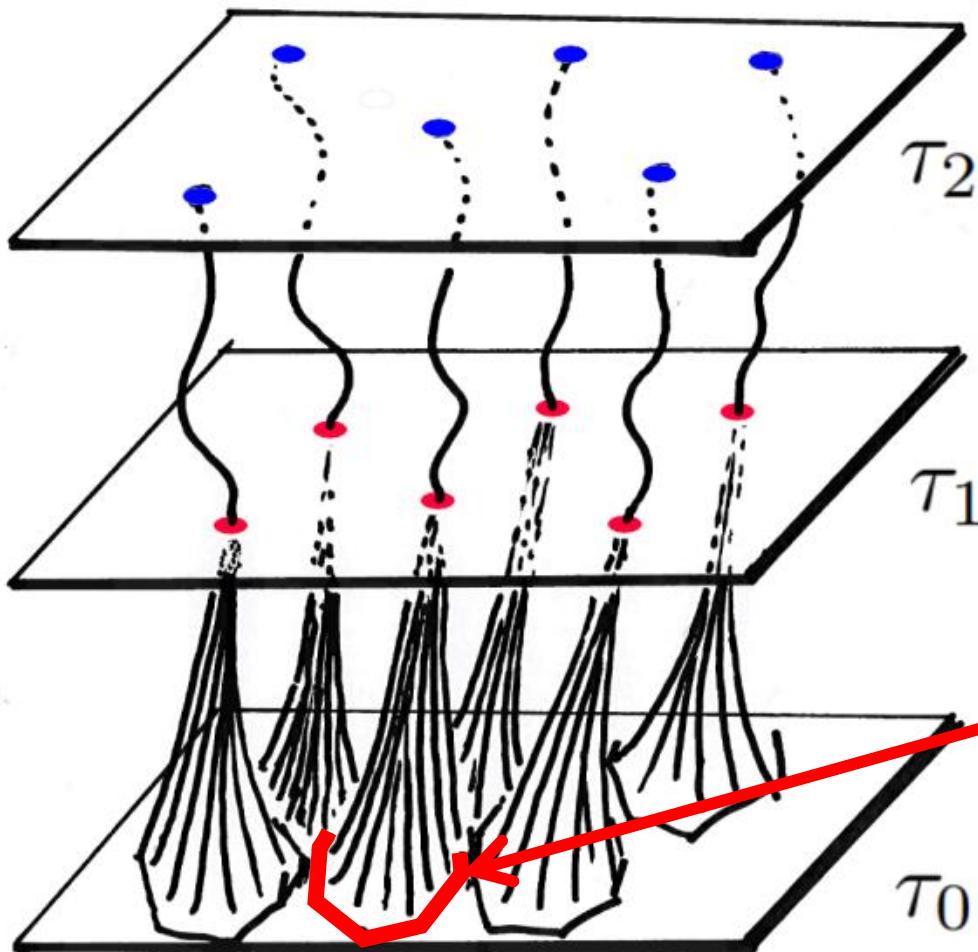
6. The Path Bundle Method



$$\frac{d^2 \mathbf{r}_i(\tau)}{d\tau^2} = F_i(\tau)$$

$$\begin{aligned} F_i(\tau) &= -\nabla \phi(\tau) \\ &= \mathbf{r}_i - \nabla \Phi(\mathbf{r}_i, \tau) \\ &= \mathbf{r}_i(\tau) - \mathbf{g}_i(\tau) \end{aligned}$$

6. The Path Bundle Method



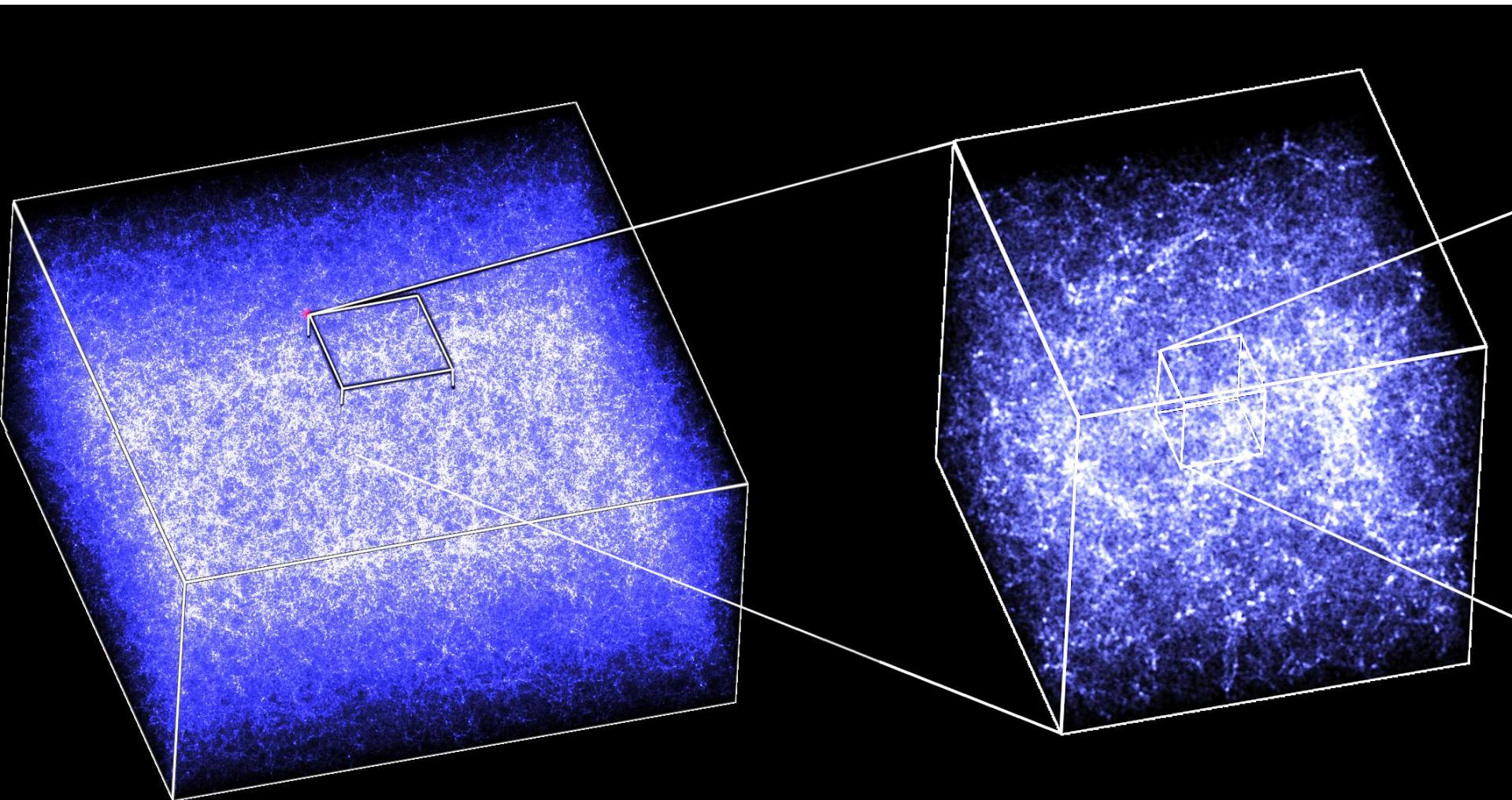
$$\frac{d^2 \mathbf{r}_i(\tau)}{d\tau^2} = F_i(\tau)$$

$$\begin{aligned} F_i(\tau) &= -\nabla \phi_i(\tau) \\ &= \mathbf{r}_i - \nabla \Phi(\mathbf{r}_i, \tau) \\ &= \mathbf{r}_i(\tau) - \mathbf{g}_i(\tau) \end{aligned}$$

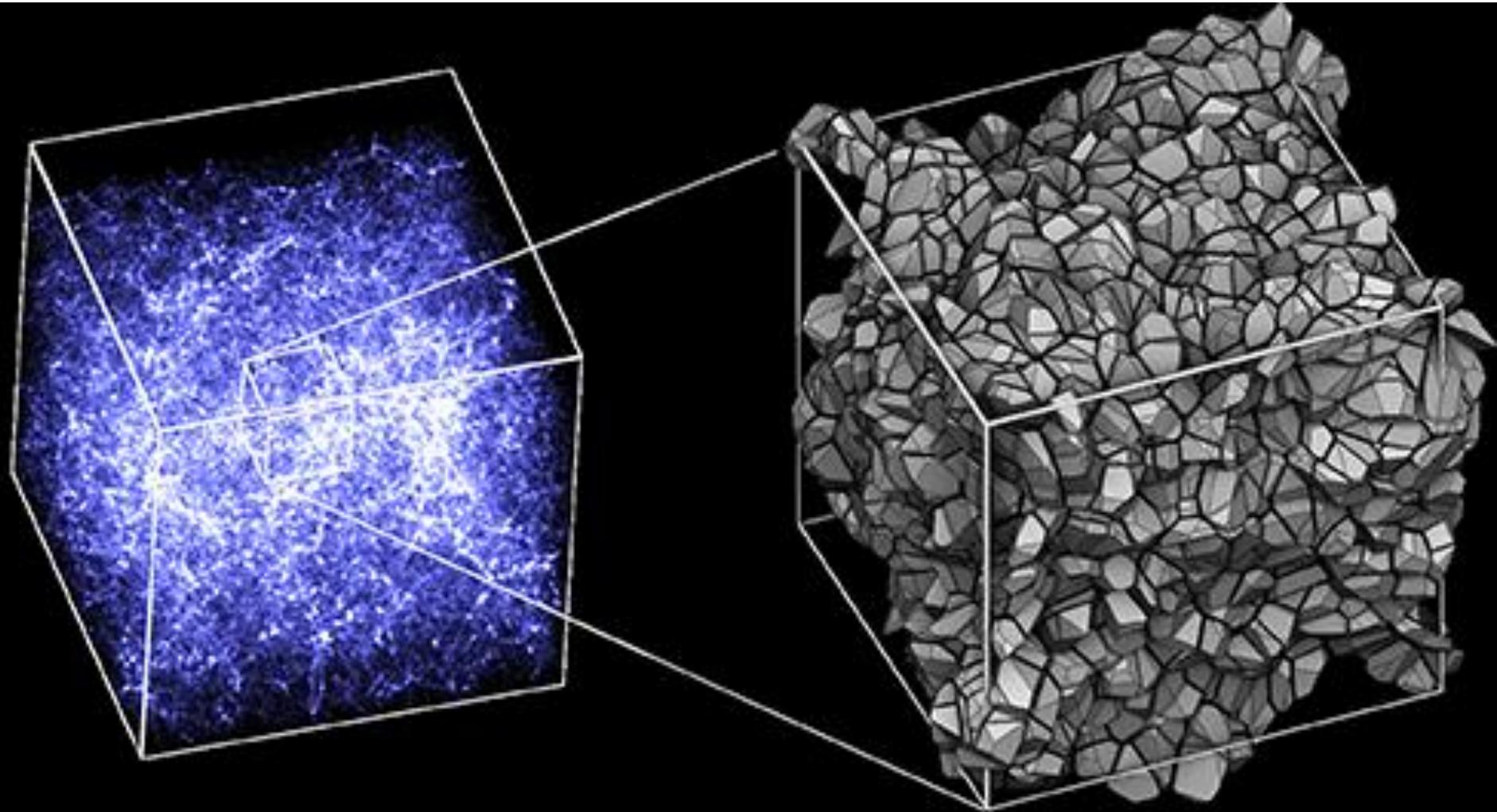
$\mathbf{g}_i(\tau)$: barycenter of

$$\begin{aligned} \{\mathbf{q} ; |\mathbf{q} - \mathbf{r}_i|^2 - \phi_i \leq & |\mathbf{q} - \mathbf{r}_j|^2 - \phi_j \\ \forall 1 \leq j \leq N \} \end{aligned}$$

6. The Path Bundle Method



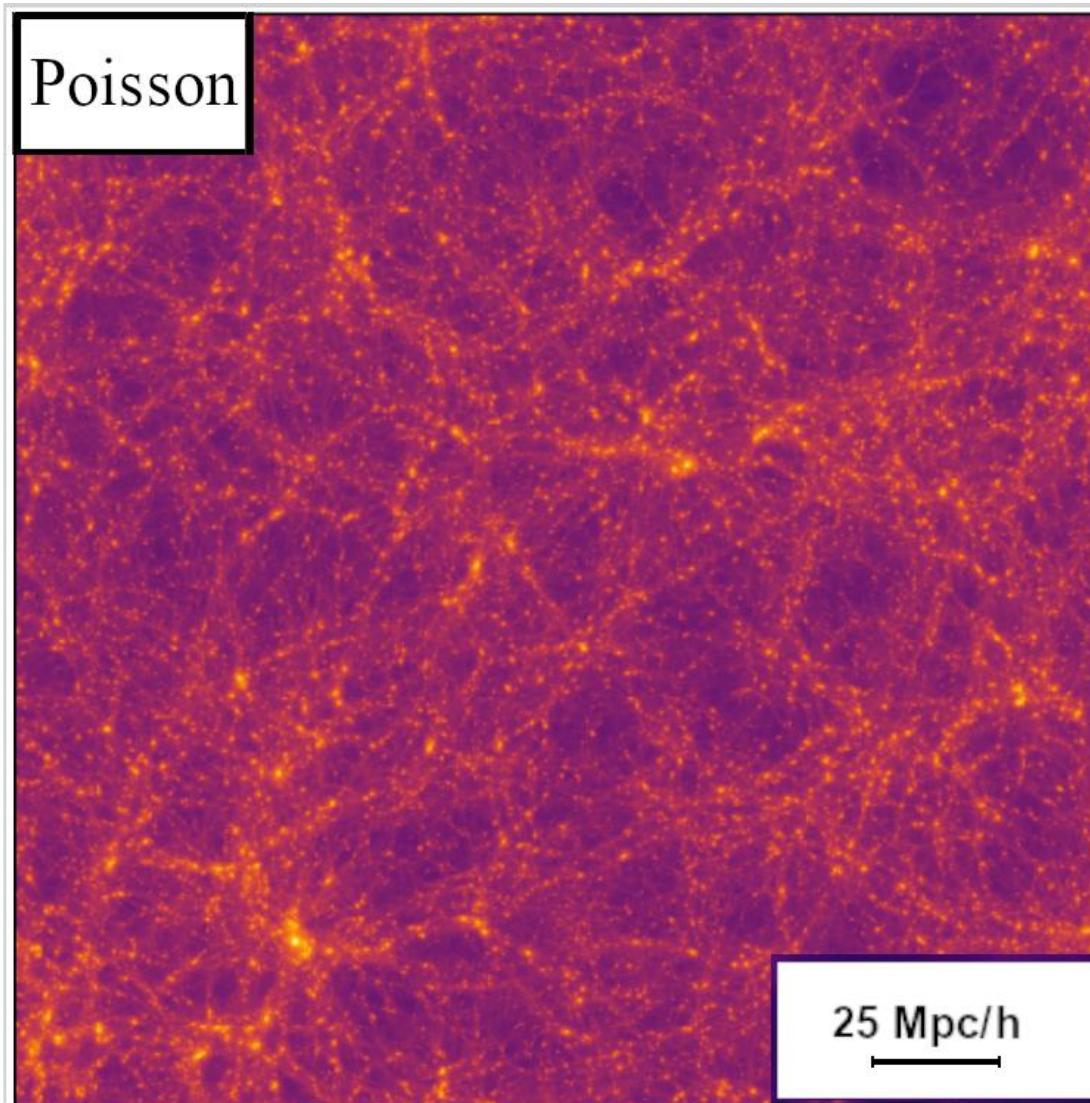
6. The Path Bundle Method



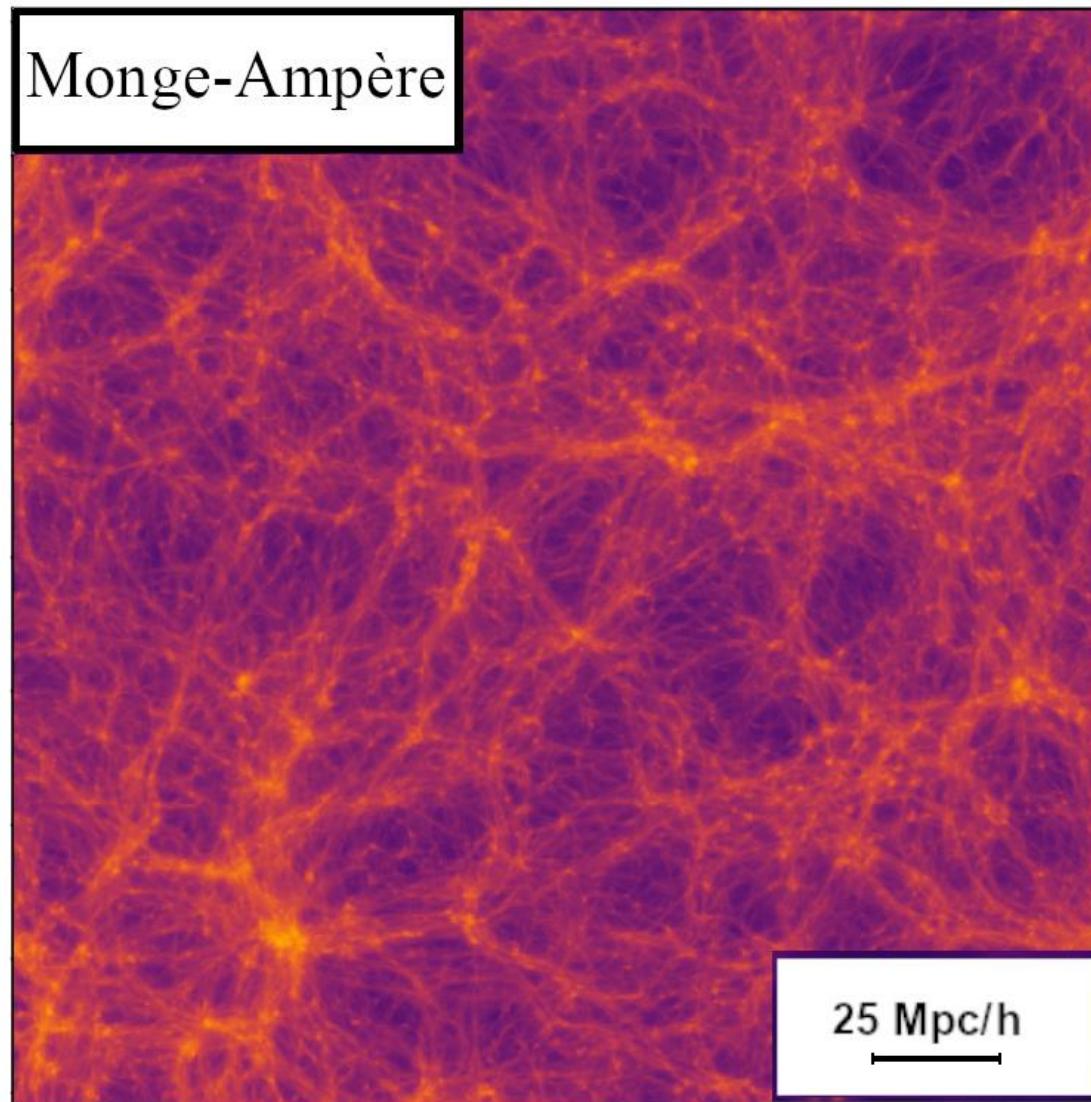
Results – Cosmological simulation

- 300 million particles
- 200 Mpc/h
- Λ -CDM initial conditions [Planck]
- Newton-Poisson and BMAG

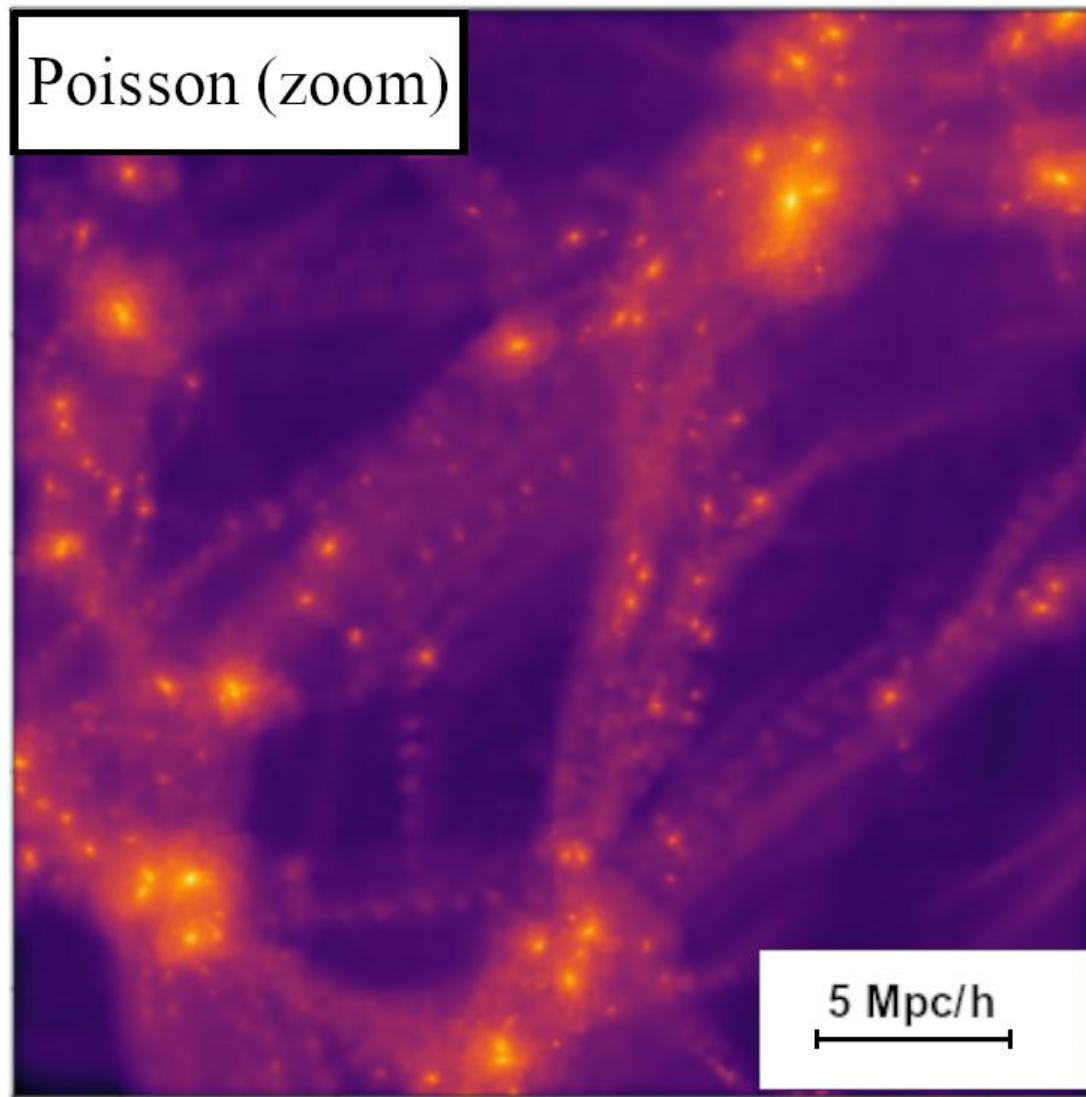
Results – Simulation with 300 M cells



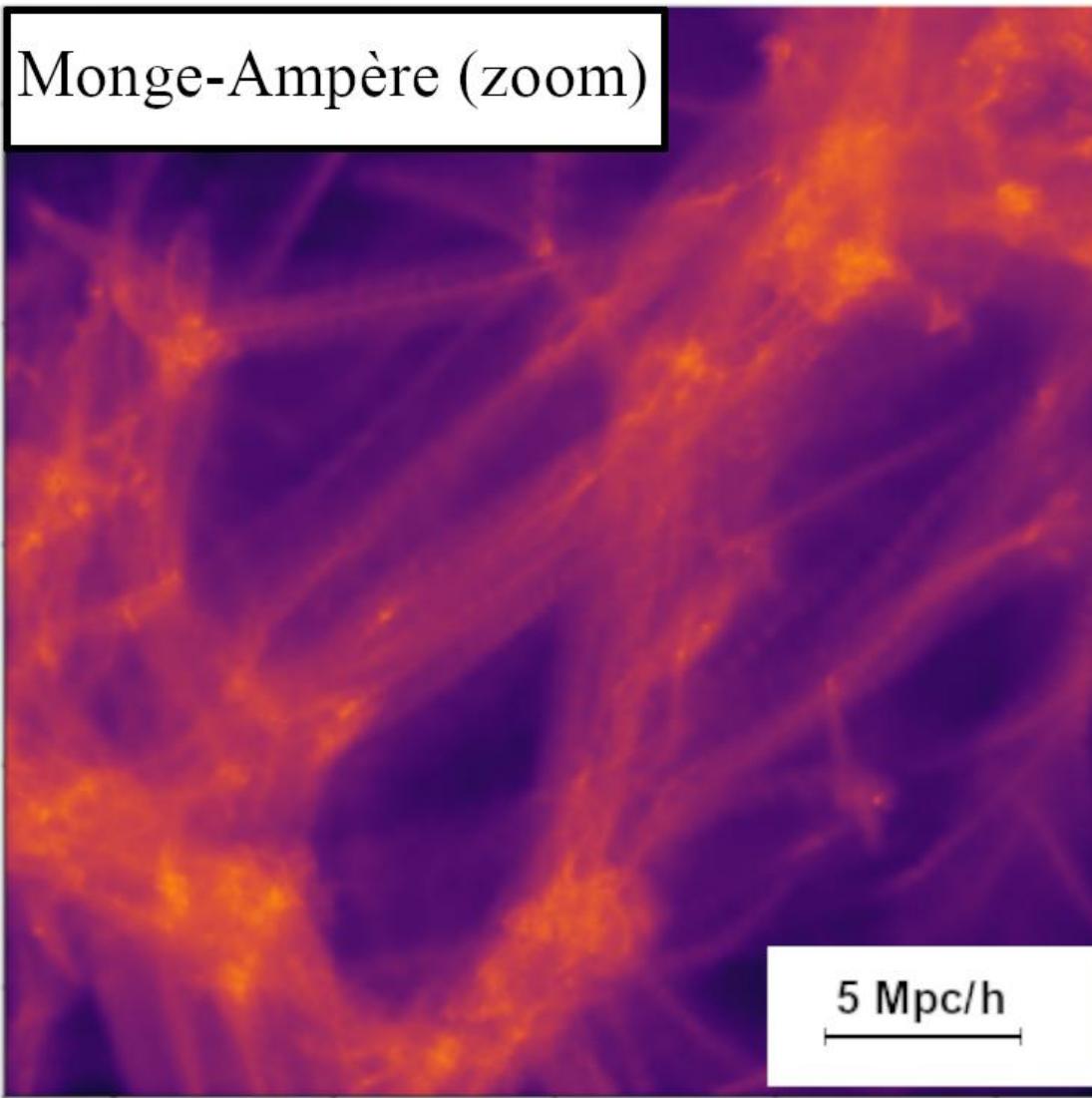
Results – Simulation with 300 M cells

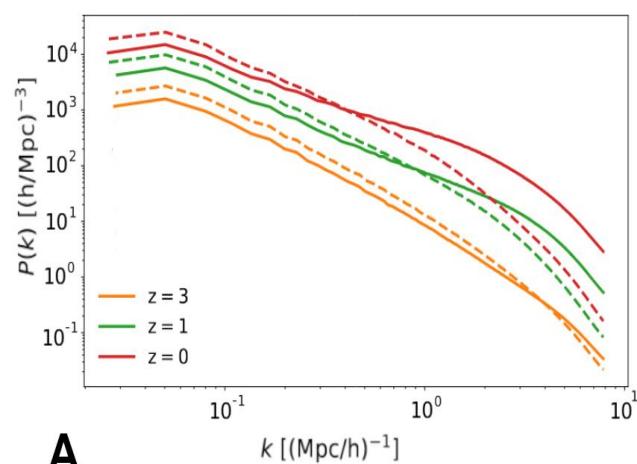
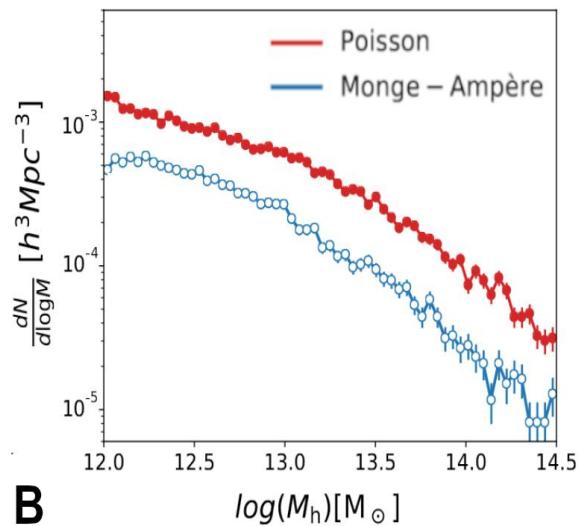
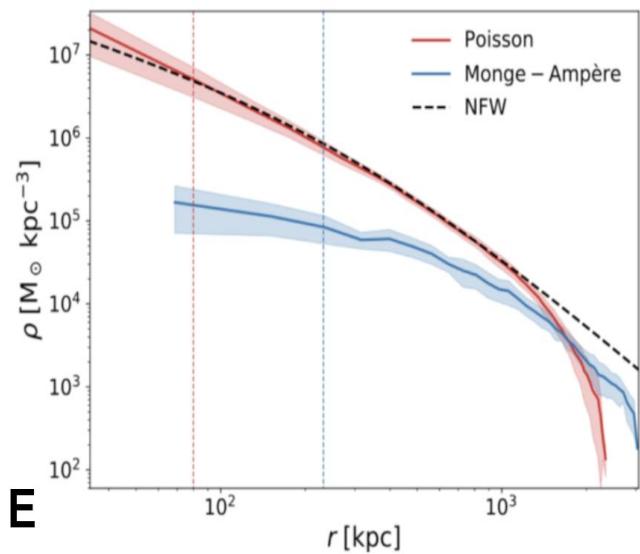
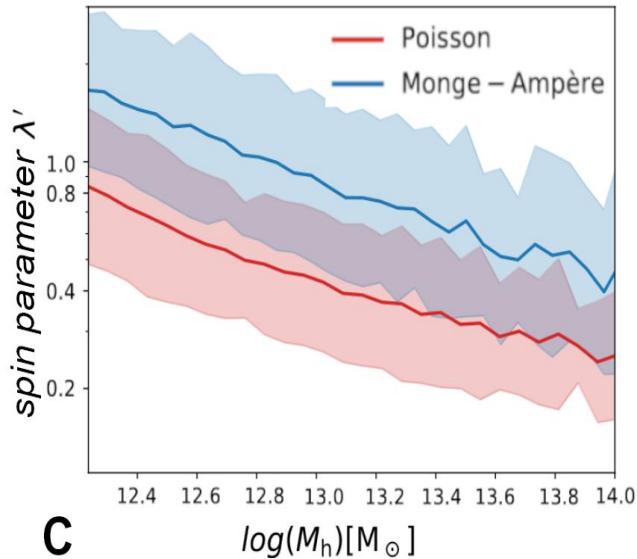
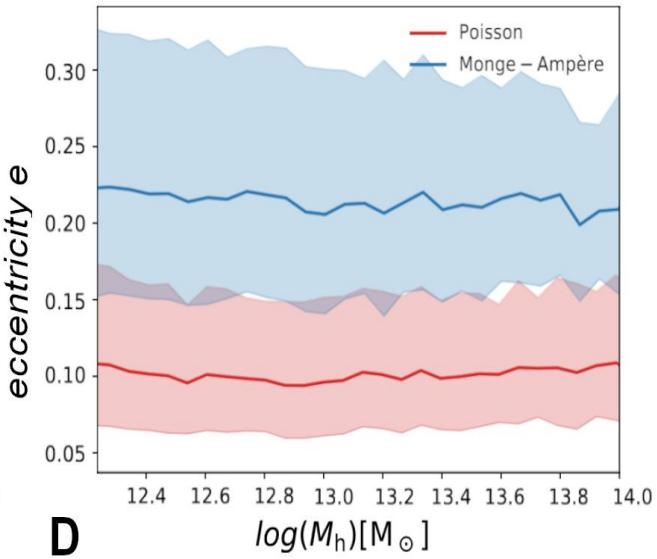


Results – Simulation with 300 M cells



Results – Simulation with 300 M cells





Halo masses
Halo shapes
Angular momentum
Rotation curves

Results – Conclusions

BMAG is a small *non-linear* modification of Newtonian dynamics

Differences:

- Larger number of filaments
- Smaller number of small haloes
- Haloes spin faster. Origin of angular momentum of disk galaxies ?
- Central density profile of haloes is flatter
- More power on large scales and less power on small scales

Results – Conclusions

BMAG is a small *non-linear* modification of Newtonian dynamics

Differences:

- Larger number of filaments
- Smaller number of small haloes
- Haloes spin faster. Origin of angular momentum of disk galaxies ?
- Central density profile of haloes is flatter
- More power on large scales and less power on small scales

Can be falsified with future observational surveys

Results – Conclusions

BMAG is a small *non-linear* modification of Newtonian dynamics

Differences:

- Larger number of filaments
- Smaller number of small haloes
- Haloes spin faster. Origin of angular momentum of disk galaxies ?
- Central density profile of haloes is flatter
- More power on large scales and less power on small scales

Can be falsified with future observational surveys

Questions:

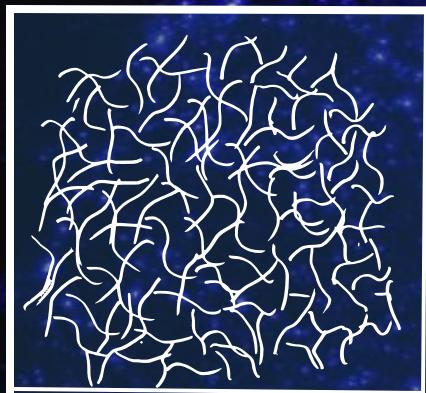
- BMAG as the weak field limit of another strong-field theory ?
- BMAG emerging from GR (or other modified theories of gravity) ?
- Entropic gravity ?

Future works:

*Exploring the shape of
the Universe*

A

Large Scale
Structure
3D, Euclidean



$L = 1 \text{ Gpc}/h$ $N = 10^9$

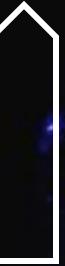
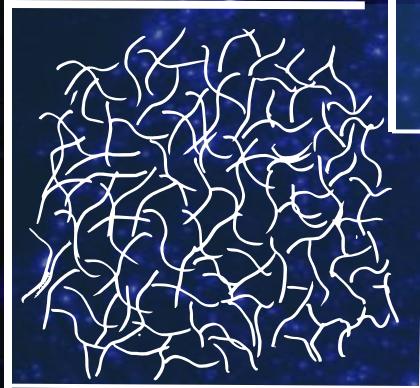
Geometric complexity

Future works:

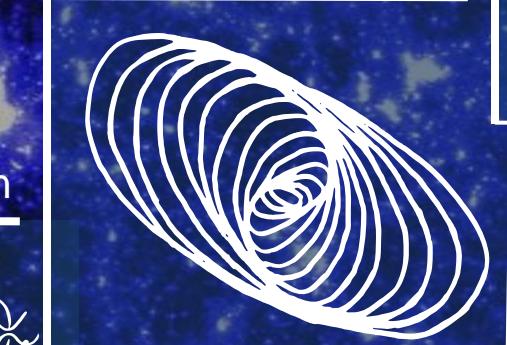
*Exploring the shape of
the Universe*

D

Calabi-Yau Manifolds
10D, Complex



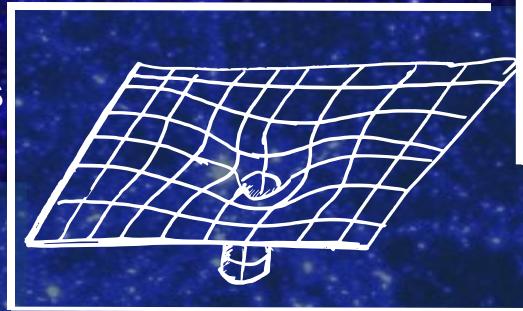
$L = 1 \text{ Gpc}/h$ $N = 10^9$



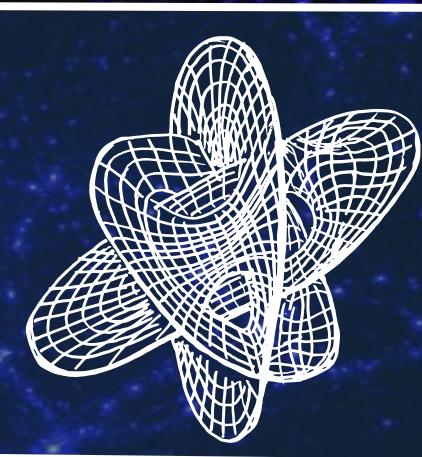
$L = 1 \text{ kpc}/h$ $N = 10^6$

C

General Relativity
4D, Riemannian



$L = 1 \text{ pc}/h$ $N = 1 \dots 10$



$L = \text{Planck}$

Scale

References on Cosmology and OT

Nature 2002, Frisch, Matarrese, Mohayaee, Sobolevski

Geom. & Func. Ana., 2004, Brenier

Confluentes Math, 2011, Brenier

Analysis & PDE, 2023, Ambrosio, Baradat and Brenier

MNRAS 2021, L, Mohayaee, von Hausegger

Physical Review Letters 2021, von Hausegger, L, Mohayaee

Journal of Computational Physics 2022, L

Physical Review Letters 2022, Nikhaktar, Sheth, L, Mohayaee

Physical Review D, 2023, Nikhaktar, Padmanabhan, L, Sheth, Mohayaee

Submitted - Brenier, L, Boldrini, Mohayaee