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High-order finite elements are a good foundation for
 next-generation scalable multi-physics simulations

Inertial Confinement Fusion

§ Large-scale parallel multi-physics simulations
• radiation diffusion
• electromagnetic diffusion
• compressible hydrodynamics

§ Finite elements naturally connect different physics

§ High-order finite elements on high-order meshes
• increased accuracy for smooth problems
• sub-element modeling for problems with shocks
• HPC utilization, FLOPs/bytes increase with the order

§ Need new (interesting!) R&D for full benefits
• meshing, discretizations, solvers, AMR, UQ, visualization, …
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We model shock hydrodynamics with high-order
 FEM in both Lagrange and Remap ALE phases

“High-order multi-material ALE hydrodynamics”, SISC 2018

Lagrange phase
Physical time evolution
Based on physical motion

Remap phase
Pseudo-time evolution
Based on mesh motion

Lagrangian phase (!c = !0)

Momentum Conservation: ρ
d!v

dt
= ∇ · σ
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Galerkin FEM

DG

Gauss-Lobatto basis

Bernstein basis

Advection phase (!c = −!vm)

Momentum Conservation:
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Many papers by: Shephard, Roca, Geuzaine, Shontz, Johnen, Persson, Panozzo

§ High-order mesh positions are discretized via position vector and a FE basis: 

x = (x1 . . .xN )T , xq(x̄q) =
N∑

i=1

xiw̄i(x̄q)

§ !"! "
#!  spans #$	for quadrilateral / hexahedral elements.

x = (x1 . . .xN )T , xq(x̄q) =
N∑

i=1

xiw̄i(x̄q)

§ Reference -> physical Jacobian is given by
the basis functions’ gradients:

Aq(x) =
∂xq

∂x̄q
=

N∑

i=1

xi[∇w̄i(x̄q)]
T Example of a single !! element

§ Mesh is optimized, by node movement (changing &) 

§ Topology is preserved.

§ !"! "
#!  spans #$	for quadrilateral / hexahedral elements

§ !"! "
#!  spans '$	for triangular / tetrahedral elements

3rd order transformation

A !"!

High–order mesh representation



§ Target-Matrix Optimization Paradigm (TMOP)
— Extended P. Knupp’s theory to high-order meshes.

§ Application-specific target elements, (
— Allow tailoring to different apps.

— Examples: ideal, ideal + specified size.

§ Point-based mesh quality metric ) *
— Can measure shape, size and alignment independently. 

computed on quadrature point level. Examples:

§ Global quality functional and minimization
— Hessian-based methods need #!µ/#T!.

Reference

Active Target

A W

T=AW
-1

µshape
2 =

|T |2

2 det(T )
− 1 µsize

55 = 0.5 (det(T )− 1)2

∂F (x)

∂x
= 0 , where F (x) =

∑

K

∫

Kt

µ(T (x))

“The target-matrix optimization paradigm for high-order meshes”, SISC 2019

Target-Matrix Optimization Paradigm (TMOP)



TMOP mesh quality metrics

§ We have explored more than 60 metrics divided into 7 metric types

§ Shape metrics – control over skew and aspect ratio.
Minimized when + is a scaled rotation of (.

§ Size metrics – control over volume.
Minimized when det + = det(().

§ Alignment metrics – control over orientation and skew.
Minimized when + = W ∗ Diag.

§ Jacobian decomposition: ( =  [volume] [orientation] [skew] [aspect ratio].

§ Implicit + explicit combinations.
SH+SZ, SH+AL, SZ+AL, SH+SZ+AL.

µ30(A,W ) = |a1||w1|− (a1 ·w1)+

|a2||w2|− (a2 ·w2)

µ14(T ) = |T − I|2

µ(T ) = αµi(T ) + (1− α)µj(T )

µ7(T ) = |T − T−t|2

µ77(T ) = 0.5

(
det(T )− 1

det(T )

)2

µ2(T ) = 0.5
|T |2

det(T )
− 1

“Algebraic mesh quality metrics”, Knupp, SISC, 2001
“17 criteria for evaluating Jacobian-based optimization metrics”, Knupp, EngComp, 2023



TMOP geometric parameters

§ Extraction map: given A, extract (volume, orientation, skew, aspect ratio)

8 +%	'	% = 9, ;, <, = 	>	'	 ⊂ 	@(

§ Insertion map: given the geometric parameters, build matrix A

8)" 9, ;, <, = = + =
9

sin<

cos ;
=

=	cos(; + <)

sin ;
= =	sin(; + 	<)

§ Extraction map for +*	'	* exists as well. For valid A, mapping is one-to-one.

§ Applications:
— Target construction

— Metric type classification

— Geometric mesh quality visualization
Aspect RatioVolume

“Geometric parameters in the target matrix mesh optimization paradigm”, Knupp, PDEAM, 2022



Geometric target construction

“The target-matrix optimization paradigm for high-order meshes”, SISC 2019



Simulation-driven target construction

“Simulation-driven optimization of high-order meshes in ALE hydrodynamics”, Comput. Fluids, 2020



• Transfer between meshes of different topology

• Supports grid functions in the entire de Rham 
complex → L2, H1, H(div), H(curl)

• Supports non-conforming AMR meshes

• Based on gslib, part of ECP/CEED

§ Advection PDE

• Transfer between meshes of same topology

• Galerkin-based formulation of advection

• Based on remap algorithm from high-order ALE

• Ensures conservation

§ High-order interpolation

initial

interpolatedinitial

advected

Discrete field transfer between meshes
Major difficulty: discrete fields are defined only on the starting mesh.

We have two approaches to address this.



Size + aspect ratio adaptivity to a material interface§ Recent Advancements

• Application-specific targets
• Foundational TMOP theory and algorithms
• Discrete field transfer between meshes
• Limiting and interface/boundary fitting
• hr-adaptivity and rp-adaptivity

Adaptivity to dynamic material positions

§ Simulation-driven mesh optimization

• Driven by information provided by the simulation 
• Adapt to dynamic / discrete simulation features
• Material interfaces, shocks, physics fields, etc.

Moving mesh simulation 3D high-velocity ball impact

Simulation-driven mesh adaptivity

Level-set boundary fitting

“hr-adaptivity for nonconforming high-order meshes with TMOP”, Eng. Comp, 2021



▪ Our approach for boundary and interface fitting is to fit the mesh to surface of interest given 
as the zero level set of a discrete function !(#), using a penalty-based formulation

13

0

'− Level set func=on

!(#) describing target interface and mesh to be optimized

(− Nodes marked for fiAng )" − Penaliza=on weight

▪ Various ways to compute ! # , e.g. distance solver for internal interfaces

▪ Preserves topology, good shape quality and appropriate local size

▪ Mostly finite element operations: generality (dim, order), GPU and PA

“High-Order Mesh Morphing for Boundary and Interface Fitting to Implicit Geometries”, CAD, 2023



Internal interface fitting

▪ Fitting of a simple internal interface ▪ Fitting of complex 3D interface

▪ We use geometric primitives to define the level set function for complex domains

Reactor spoke CSG decomposition AMR around the zero level set Distance function from zero level set



▪ Reactor design problem: Maximize the energy produced by the system (blue region) while 
keeping the volume of the aluminum fins fixed (red in plots below).

▪ We first generate a uniform mesh and optimize it to get an initial mesh to be used for the 
reactor design problem.

Interface fitting mesh Initial fitted mesh Fitted mesh optimized for 
energy production

Initial mesh

Interface fitting for a reactor design problem



Shape optimization using conformal meshes

Conformal meshing using r-adaptivity for shape optimization of a beam to 
maximize stiffness for a given mass constraint.



Using the mesh being optimized for representing F(G) results in a sub-optimal fit if
▪ The mesh does not have sufficient resolution around the zero level-set of !(#).
▪ The zero level-set of !(#) is outside the domain of the mesh.

We use a background mesh with AMR to ensure accuracy in F(G+) and its gradient
▪ Can also be used for tangential relaxation

Current mesh and target level set Level set on a background mesh

F(G) = H(G+, F(G+), G)
Level set is transferred from the background mesh to the current mesh with gslib:

Boundary fitting



Uniform Cartesian (second-order) mesh trimmed and fit to the level set function.

CSG Tree for a curvilinear domain Background mesh and distance function

Boundary fitting for a complex 3D domain



Mixed-order meshes using rp-adaptivity
Use high-order elements in regions of low-curvature and lower-order elements elsewhere

[Submitted to IMR 2024 in collaboration with Franck and Claire from CEA]

Dense low-order mesh AMR background mesh Extracted Level-Set Coarse target mesh

Linear mesh aligned with the 
target surface.

Optimized mesh with high-order 
elements around interface. Final Coarse Mixed-Order Mesh compared with 

Dense Linear Mesh.



2 Labs, 5 Universities, 30+ researchers

ceed.exascaleproject.org



A = PTGTBTDBGP

Finite element operator assembly/evaluation can be split into parallel, mesh, 
basis, and geometry/physics parts:

✔ purely algebraic

✔ partial assembly = store only D, evaluate B (tensor-product structure)

✔ AD-friendly

✔ better representation than A: optimal memory, near-optimal FLOPs

✔ high-order operator format



1 GPU 4 GPUs 1024 GPUs

Best total performance: 2.1 TDOF/s
Largest size: 34 billion

OpBmized kernels for MPI buffer packing/unpacking on the GPU

Single GPU performance: 2.6 GDOF/s
Problem size: 10+ million

MFEM performance on multiple GPUs



▪ Easy-to-setup benchmark for Oming high-order mesh opOmizaOon.

▪ Two parameters (%", %#) ∈ (0,1]$ control the element deformaOon.

▪ In our tests, we use a 24×24×24 mesh, 9 quadrature points in 

each direcOon in an element, and a shape metric .%&% = |(|"
%) ⁄" $ − 1.

“Accelerating high-order mesh optimization using finite element partial assembly on GPUs”, JCP, 2023



▪ Timing comparison on Lassen, a Livermore Computing supercomputer, for full- and partial-
assembly on CPU vs partial-assembly on GPU.

▪ CPU - 36 cores.

▪ GPU - 4 CPU cores with 1 GPU per core. 

1(30×) speed-up on GPUs versus CPUs

PA beneficial on CPUs for higher 3 Throughput on NVIDIA V100



Density (top) and 2nd order mesh (bo\om) for the ALE shaped charge GPU simulaOon.
20x speed-up for TMOP step in the solver!



§ All presented methods are available in MFEM

— MFEM contains 12 2D metrics, 7 3D metrics, 

all metric derivatives, 6 target constructions

— Mesh Optimizer miniapp provides choice of

target construction, quality metric, adaptivity 

fields and parameters, GLVis visualization. mfem.org

▪ Mesh adapYvity for HPC simulaYons on high-order 
meshes via TMOP

▪ TMOP for high-order meshes

▪ AdapYve surface fi^ng

▪ GPU acceleraYon

§ Papers and more informaYon: llnl.gov/casc/projects/ethos
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mfem.org
(v4.6, Sep/2023)

Flexible discretizations on unstructured grids
§ Triangular, quadrilateral, tetrahedral, hexahedral, prism; volume, 

surface and topologically periodic meshes
§ Bilinear/linear forms for: Galerkin methods, DG, HDG, DPG, IGA, …
§ Local conforming and non-conforming AMR, mesh optimization
§ Hybridization and static condensation

High-order methods and scalability
§ Arbitrary-order H1, H(curl), H(div)- and L2 elements
§ Arbitrary order curvilinear meshes
§ MPI scalable to millions of cores + GPU accelerated
§ Enables development from laptops to exascale machines.

Solvers and preconditioners
§ Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, VisIt, …
§ AMG solvers for full de Rham complex on CPU+GPU, geometric MG
§ Time integrators: SUNDIALS, PETSc, built-in RK, SDIRK, ...

Open-source software
§ Open-source (GitHub) with 114 contributors, 50 clones/day
§ Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, …
§ 75+ example codes & miniapps: mfem.org/examples

Modular Finite Element Methods (MFEM)

http://mfem.org/examples


Device support in MFEM

MFEM support GPU acceleration in many linear algebra and finite element operations

§ Several MFEM examples + miniapps have been ported with small changes

§ Many kernels have a single source for CUDA, RAJA and OpenMP backends

§ Backends are runtime selectable, can be mixed

§ Recent improvements in CUDA, HIP, RAJA, SYCL, …

“MFEM: A modular finite element methods library”, CAMWA 2020


