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High-order finite elements are a good foundation for
next-generation scalable multi-physics simulations

= Large-scale parallel multi-physics simulations
- radiation diffusion

- electromagnetic diffusion
- compressible hydrodynamics

= Finite elements naturally connect different physics

v V% v. mE |
H(grad) H(CUTZ) Lo 8th order Lagrangian simulation
“nodes” “edges” “elems” of shock triple-point interaction
High-order High-order High-order High-order
kinematics MHD rad. diffusion thermodynamics

= High-order finite elements on high-order meshes
- increased accuracy for smooth problems
« sub-element modeling for problems with shocks
- HPC utilization, FLOPs/bytes increase with the order

= Need new (interesting!) R&D for full benefits

« meshing, discretizations, solvers, AMR, UQ, visualization, ...
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BREAKING NEWS: This is an announcement that has
¥ been decades in the making.

On December 5, 2022 a team from DOE's
Livermore_Lab made history by achieving fusion
ignition.

This breakthrough will change the future of clean
power and America's national defense forever.
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We model shock hydrodynamics with high-order
FEM in both Lagrange and Remap ALE phases

Lagrange phase
Physical time evolution

Remap phase

Pseudo-time evolution

Based on physical motion Based on mesh motion

Lagrangian phase (¢ = 6)

Advection phase (¢ = —Vp)

Momentum Conservation: Momentum Conservation: (de) = Vm - V(pV)
T
d
Mass Conservation: d_lt) =—pV -V S Mass Conservation: j—p =Vm-Vp
T
. de N d
Energy Conservation: P =" Vv / Energy Conservation: % = Vm - V(pe)
T
dx ‘ -
Equation of Motion: = ] ] Mesh velocity: Vm = dx
dt ) Bernstein basis - dr
||M Lawrence Livermore . . . . ‘:{ ZCAsC
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High—order mesh representation

High-order mesh positions are discretized via position vector and a FE basis:
N
T _ _
r=(x1...xN) , x4(Ty) = E ;W (ZTq)
i=1

w, }VE spans Q;, for quadrilateral / hexahedral elements A
1J1 k

-

{VT/-}NE spans P, for triangular / tetrahedral elements Ps
if1 k ‘,

Reference -> physical Jacobian is given by

the basis functions’ gradients:
Ox al R |
_ q __ — (= T Example of a single Q, element
Ay(z) = 97 = Z x; | Vw;(Z,)] 2
q

1=1

Mesh is optimized, by node movement (changing x)

Topology is preserved.

100%e,
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Target-Matrix Optimization Paradigm (TMOP)

= Target-Matrix Optimization Paradigm (TMOP)
— Extended P. Knupp’s theory to high-order meshes.

A W
= Application-specific target elements, W A~ Reference g
-1
— Allow tailoring to different apps. -
— Examples: ideal, ideal + specified size. Active Target

= Point-based mesh quality metric u(T)

— (Can measure shape, size and alignment independently.

computed on quadrature point level. Examples:

2

shape . |T’ 1 size L O 5 d 2 5.615
= —— — = 0. (1) —1

Ha 2 det(T) M55 (det(T) ) |

= Global quadlity functional and minimization
— Hessian-based methods need % /aT?.

OF
a;(;c) =0, where F(x)= ;/Kt (T (x))

National Laboratory “The target-matrix optimization paradigm for high-order meshes”, SISC 2019
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TMOP mesh quality metrics

= We have explored more than 60 metrics divided into 7 metric types

= Jacobian decomposition: W = [volume] [orientation] [skew] [aspect ratio].

= Shape metrics — control over skew and aspect ratio. ik
Minimized when A is a scaled rotation of W. Ha(T) = O'5det(T) 1

= Size metrics — control over volume. ] 2
Minimized when det(4) = det(W). prr(T) = 0.5 (det(T) - det(T))

= Alignment metrics — control over orientation and skew.
Minimized when A = W * Diag. p30(A, W) = |ai|jwi| — (a1 - wi)+
|as||ws| — (a2 - w2)
= |mplicit + explicit combinations.
SH+SZ, SH+AL, SZ+AL, SH+SZ+AL. (7)) =|T =T~ pu(T) =|T - I]?

p(T) = api(T) + (1 — a)p;(T)

- . “Algebraic mesh quality metrics”, Knupp, SISC, 2001
wrence Livermore . . . . w0%
Nationai Laboratory “17 criteria for evaluating Jacobian-based optimization metrics”, Knupp, EngComp, 2023



TMOP geometric parameters

= Extraction map: given A, extract (volume, orientation, skew, aspect ratio)

E(A2X2)=(U,9,¢,p)EP C R4

= Insertion map: given the geometric parameters, build matrix A

cost \Jp cos(8 + @)
E71(v,8,p,p) =A= |- \/ﬁ
Sing | SN0 S in(o + ¢)
G

= Extraction map for A3 y 5 exists as well. For valid A, mapping is one-to-one.

= Applications: N\ I
=N

L

B

— Target construction

— Metric type classification

— Geometric mesh quality visualization -

AGEIEHEY  “Geometric parameters in the target matrix mesh optimization paradigm”, Knupp, PDEAM, 2022
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Geometric target construction

v o
, "-'Jl
o { = |& [¥F]lsine
L0
W= ¢ |cos@ —sin@ P . S
= sing |sinf cos@ 0 sm«p 0 O y:
|2 P @ ..

______

Original 2nd order mesh Ideal shape + shape-metric Ideal shape, equal aize « Ideal shape, spatially varying

shape-metrio, size ~ shapersize -metric.
» 4 .- J .
'f' ==pP= l.)‘\.g(‘. ) $ & —\—-'0" = ;-i’ - l.p",\n\", J t‘(‘l""’ o -.T'.l’ @ l'}l\"\., '
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Simulation-driven target construction

I L%
Simulation data material Size-Lx 1/|Vn|

’ min

10
We /_II o] [l COW’] VP
simnd 10 1| |0 sin ¢ 0 va’,‘,

« ¢ = = for an ideal square.

« Use a Shape + Size polyconvex metric, pgy = (1 = ), + ypn.

TP

(1) 0.5 -
palT) det(T)

1 (T = e =27

« Note: n must be remapped between and after Newton iterations.

R v are “Simulation-driven optimization of high-order meshes in ALE hydrodynamics”, Comput. Fluids, 2020
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Discrete field transfer between meshes

Maijor difficulty: discrete fields are defined only on the starting mesh.
We have two approaches to address this.

= Advection PDE

» Transfer between meshes of same topology
* Galerkin-based formulation of advection
* Based on remap algorithm from high-order ALE

* Ensures conservation

% =-u- Vn’ T](X(),T = O) = HO(XO)

= High-order interpolation

* Transfer between meshes of different topology

* Supports grid functions in the entire de Rham
complex = L2, HY, H(div), H(curl)

* Supports non-conforming AMR meshes
» Based on gslib, part of ECP/CEED

Mo, ug(Mop), M — u(M)
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Simulation-driven mesh adaptivity

LT

= Simulation-driven mesh optimization

[

I
|
|
[T
[T
I

» Driven by information provided by the simulation
« Adapt to dynamic / discrete simulation features
» Material interfaces, shocks, physics fields, etc.

0.5

I

[T
[T
[T
[T
[T
[T

= Recent Advancements Size + aspect ratio adaptivity to a material interface

» Application-specific targets

* Foundational TMOP theory and algorithms

» Discrete field transfer between meshes —
« Limiting and interface/boundary fitting

* hr-adaptivity and rp-adaptivity

Level-set boundary fitting

,,,,,, densty

e

N

Adaptivity to dynamic material positions Moving mesh simulation

x —
fme = 350 -01 time = 80.0

3D high-velocity ball impact
M Lawrence Livermore
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Adaptive surface fitting

= Our approach for boundary and interface fitting is to fit the mesh to surface of interest given
as the zero level set of a discrete function a(X), using a penalty-based formulation

l/ V74

;ﬁ; A
AN

o (X) describing target interface and mesh to be optimized

F(x) = / p(T(x))dz: + w, Z o“(zs)
Eem” Bt

sES
o- Level set function S- Nodes marked for fitting W, —Penalization weight

= Various ways to compute o(X), e.g. distance solver for internal interfaces
= Preserves topology, good shape quality and appropriate local size

= Mostly finite element operations: generality (dim, order), GPU and PA

4000,

R v are “High-Order Mesh Morphing for Boundary and Interface Fitting to Implicit Geometries”, CAD, 2023



Internal interface fitting

= Fitting of a simple internal interface - Fitting of complex 3D interface
—

= We use geometric primitives to define the level set function for complex domains

0.90
0.34

0.086

/- -0.078

| e -0.20
Reactor spoke CSG decomposition AMR around the zero level set Distance function from zero level set
RN
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Interface fitting for a reactor design problem

= Reactor design problem: Maximize the energy produced by the system (blue region) while
keeping the volume of the aluminum fins fixed (red in plots below).

= We first generate a uniform mesh and optimize it to get an initial mesh to be used for the
reactor design problem.

Initial mesh

— 495

temperature

4.8e+02

S
® Wi

Interface fitting mesh Initial fitted mesh

Fitted mesh optimized for
energy production

*
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Shape optimization using conformal meshes

-
Conformal meshing using r-adaptivity for shape optimization of a beam to
maximize stiffness for a given mass constraint.

M Lawrence Livermore
National Laboratory
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Boundary fitting

Using the mesh being optimized for representing o(X) results in a sub-optimal fit if
= The mesh does not have sufficient resolution around the zero level-set of o (X).

= The zero level-set of g(X) is outside the domain of the mesh.

We use a background mesh with AMR to ensure accuracy in 6(Xg) and its gradient

= Can also be used for tangential relaxation

imE o |0.
I-].

Current mesh and target level set Level set on a background mesh

Level set is transferred from the background mesh to the current mesh with gslib:

o(x) = I(xp, 0(Xp), X)

M Lawrence Livermore %2 %.CASC
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Boundary fitting for a complex 3D domain

CSG Tree for a curvilinear domain Background mesh and distance function

Uniform Cartesian (second-order) mesh trimmed and fit to the level set function.

([ Lawrence Livermore % CASC
— National Laboratory RO



Mixed-order meshes using rp-adaptivity

Use high-order elements in regions of low-curvature and lower-order elements elsewhere
[Submitted to IMR 2024 in collaboration with Franck and Claire from CEA]

Dense low-order mesh AMR background mesh Extracted Level-Set Coarse target mesh

Linear mesh aligned with the Optimized mesh with high-order

target surface. elements around interface. Final Coarse Mixed-Order Mesh compared with
Dense Linear Mesh.

&
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EXASCALE DISCRETIZATIONS

ceed.exascaleproject.org

* PDE-based simulations on unstructured grids
* high-order and spectral finite elements

v any order space on any order mesh  curved meshes,

| v unstructured AMR  optimized low-order support

10" order basis function non-conforming AMR, 2" order mesh

» state-of-the art CEED discretization libraries
v better exploit the hardware to deliver significant performance

gain over conventional methods
v based on MFEM/Nek, low & high-level APIs

Lg

2 Labs, 5 Universities, 30+ researchers odiifitacsaiigns

High-performance spectral elements Scalable high-order finite elements




Finite element operator decomposition

Finite element operator assembly/evaluation can be split into parallel, mesh,
basis, and geometry/physics parts:

A=P'GT'BT"DBGP

global domain sub-domains elements quadrature N
all (shared) dofs device (local) dofs element dofs point values /-j
P G B
- —_— —_—
¢ .. .- L .- Qr— .9 0 .9 ee Qr—
PT .. .. .. .. GT @ e e ¢ e e e B 7’
T-vector L-vector E-vector Q-vector

V partial assembly = store only [, evaluate B (tensor-product structure)

V better representation than A: optimal memory, near-optimal FLOPs

V purely algebraic V' high-order operator format V' AD-friendly

KRR
|| Lawrence Livermore % % CASC
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[DOFs x CG iterations] / [MPI tasks x seconds]

MFEM performance on multiple GPUs

1e9  Config: MFEM/ceed-cuda, host: lassen (1 node, 1 task/node), gcc, BP3 1e9  Config: MFEM/ceed-cuda, host: lassen (1 node, 4 tasks/node), gcc, BP3 1e9 Config: MFEM/ceed-cuda, host: lassen (256 nodes, 4 tasks/node), gcc, BP3

25

20t

0.5}

103 104 105 106 107

Points per MPI task Points per MPI task Points per MPI task
1 GPU 4 GPUs 1024 GPUs

Problem size: 10+ million Largest size: 34 billion

Optimized kernels for MPI buffer packing/unpacking on the GPU

s %easc

Lot
t:o N
v
.
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Kershaw benchmark

= Easy-to-setup benchmark for timing high-order mesh optimization.

oturn
a)e(xexexe(xe(6ex-16)+10)); // Smooth tramsition from & to b
o opay, const double opsz

- Two parameters (€, €;) € (0,1]? control the element deformation.

const doudle y, const doudle z,
ouble &Y, double &2) // (x.y.z) -> (X,¥,2) Kershaw tramsfora

= In our tests, we use a 24X24Xx24 mesh, 9 quadrature points in

T : T|?
each direction in an element, and a shape metric yzg3 = —3|T2|/3 — 1.

(a) gy, =, =1 (b) g, =03, e, =1 (c)gy=1,¢e,=0.3 (d) g, =e. =03

“Accelerating high-order mesh optimization using finite element partial assembly on GPUs”, JCP, 2023
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Kershaw timing and throughput results

= Timing comparison on Lassen, a Livermore Computing supercomputer, for full- and partial-
assembly on CPU vs partial-assembly on GPU.

= CPU - 36 cores.

= GPU - 4 CPU cores with 1 GPU per core.

Time to solution (sec)

o

- n
L
*-p
@ n

p=1|p=2|p=3|p=4

CPU | 29 | 31.1 | 489.6 | 2868.8 =
~

CPU™ | 18.0 | 41.0 | 128.5 | 298.0 S | |
o

GPUPA | 04 | 09 | 39 8.5 ——
05 ‘::.0 {

Speedup (GPUPA vs CPU™4)

42)( 43X 32x 35>< ....Q.._
lll(.)‘ {1} lli‘; ]'q‘n'
0 (30X) speed-up on GPUs versus CPUs Degrees of Freedom (DOF)
PA beneficial on CPUs for higher p Throughput on NVIDIA V100

4000,

M Lawrence Livermore
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GPU acceleration for multi-material high-order ALE
with solution-driven TMOP adaptivity

) I T D T O I (| 1 b I T T Y T, L O Y 2 O | 1 L T LY I Y 1
=) B U6 & 6 VXN I O B W A O W N |-
nws
| ) i | Y ¥ I | ) i O I
ol 5 I A 1) | O Y 0 Y 0 A S 0 e O (0 O D [ 0 O o o i 6 Y 0 O I I O N e O T N ) O ol 5 I A 1) | 0 N I A S A e A A I A

Density (top) and 2nd order mesh (bottom) for the ALE shaped charge GPU simulation.
20x speed-up for TMOP step in the solver!

ROLES
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Summary

= Mesh adaptivity for HPC simulations on high-order
meshes via TMOP

= TMOP for high-order meshes
= Adaptive surface fitting

= GPU acceleration

= All presented methods are available in MFEM
— MFEM contains 12 2D metrics, 7 3D metrics,
all metric derivatives, 6 target constructions
— Mesh Optimizer miniapp provides choice of

target construction, quality metric, adaptivity

fields and parameters, GLVis visualization. mfem.org

= Papers and more information: lInl.gov/casc/projects/ethos

M Lawrence Livermore
National Laboratory
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Modular Finite Element Methods (MFEM)

Flexible discretizations on unstructured grids

= Triangular, quadrilateral, tetrahedral, hexahedral, prism; volume,
surface and topologically periodic meshes

= Bilinear/linear forms for: Galerkin methods, DG, HDG, DPG, IGA, ...

= Local conforming and non-conforming AMR, mesh optimization
= Hybridization and static condensation

High-order methods and scalability
= Arbitrary-order H1, H(curl), H(div)- and L2 elements
= Arbitrary order curvilinear meshes
= MPI scalable to millions of cores + GPU accelerated

= Enables development from laptops to exascale machines.

Solvers and preconditioners

= Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, Vislt, ...

= AMG solvers for full de Rham complex on CPU+GPU, geometric MG
= Time integrators: SUNDIALS, PETSc, built-in RK, SDIRK, ...

Open-source software

= Open-source (GitHub) with 114 contributors, 50 clones/day
= Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, ...

= 75+ example codes & miniapps: mfem.org/examples

M Lawrence Livermore
National Laboratory

mfem.org
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http://mfem.org/examples

Device support in MFEM

MFEM support GPU acceleration in many linear algebra and finite element operations

Library Kernels Backends Hardware

A
A\
5

| mesh

fem CPU

= Several MFEM examples + miniapps have been ported with small changes
= Many kernels have a single source for CUDA, RAJA and OpenMP backends
= Backends are runtime selectable, can be mixed

= Recent improvements in CUDA, HIP, RAJA, SYCL, ...

4000,

 NatmarE Sboratony “MFEM: A modular finite element methods library”, CAMWA 2020




