
Optimal Primal-Dual Meshes &
Discretisations for
Geophysical Fluids

DARREN ENGWIRDA

Theoretical Division
Los Alamos National Laboratory

Luminary Cloud Inc

dengwirda@luminarycloud.com

Tetrahedron VII—October, 2023



Big whorls have little whorls
That feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity — Lewis Richardson, 1920



Geophysical flows are characterised by multiscale turbulence —
a ‘cascade’ of eddies at smaller and smaller length scales
(and larger and larger nonlinearity)



Multiscale geophysical flows

Resolving ‘everything’ at very high-resolution is too computationally expensive —
unstructured meshes used to perform scale-selective eddy resolving simulations

**North Atlantic Eddy Dynamics: MPAS project, Petersen et al, 2015.

Turbulent ocean dynamics resolved by US-DOE’s Model for Prediction Across Scales
(MPAS-O).
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Multiscale geophysical flows

Resolving ‘everything’ at very high-resolution is too computationally expensive —
unstructured meshes used to perform scale-selective eddy resolving simulations

**North Atlantic Eddy Dynamics: MPAS project, Petersen et al, 2015.

Requires solution of hard meshing problem: grids must be centroidal, well-centred,
orthogonal and smoothly graded.
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‘Mimetic’ Discetisation Schemes

Solve ‘rotating’ Naiver-Stokes system:

∂u

∂t
+ qhu⊥ = −

1

ρ0
∇p−∇

1

2
∥u2∥+∇ · (Ku∇u) ,

∂h

∂t
+∇ · (hu) = 0 ,

dp

dz
= −gρ , ρ = f(ψ, p) ,

∂ψ

∂t
+∇ · (uψ) = ∇ · (Kψ∇ψ)

u = u(x, t) velocity, q = ξ+f
h

potential vorticity,
h = h(x, t) fluid thickness, ψ conserved tracers.

(Orthogonal) staggered unstructured scheme con-
serves energy, vorticity, enstrophy, mass.

Use of structure-preserving (mimetic) schemes im-
portant wrt. long time-scale dynamics...

...but requires ‘near perfect’ unstructured meshes.
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‘Mimetic’ Discetisation Schemes

Why/what are mimetic / structure-preserving discretisations?

• Numerical schemes that ‘mimic’ the continuous properties of the PDEs —
discrete operators satisfy continuous vector calculus identities.

• Conserving mass is ‘easy’ — conserving higher-order moments of the flow is
hard — discrete Hamiltonian’s, sympectic approaches...

• For geophysical flows, conserve energy (kinetic + potential) and enstropy (the
square of potential vorticity) is important.

• Ensures that PDE solution sits on correct manifold in phase space — prevent
unphysical equilibria.

• Important for integration of systems over very long time-scales: climate
models require O(1000yr) simulations...
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What can go wrong...?

Error in fluid height; Centroidal Voronoi-type multiscale mesh:

Significant grid-scale imprint a manifestation of poor convergence in the L∞-norm:
mimetic numerics very sensitive to mesh!
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What can go wrong...?

Meshes are heavily optimised CVT structures:

Must require something more than standard Delaunay-Voronoi meshes + numerics
can offer...
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Source of Discretisation Error

‘Defect’ in primal-dual staggering leads to errors in ∇ · (·), ∇(·), ∇× (·):

• Offsets from edge centroids to primal-dual bisectors δe, γe.

• Offsets from primal vertices to dual centroids γf .

• Offsets from dual vertices to primal centroids δf .

∫
di

∇ · (uψ) dA =

∮
∂di

(u · n̂)ψ ds (1)

≃
n∑
e=1

∫
e
(u · n̂)e ψe dl (2)

Only 2nd-order accurate if δe = 0, γe = 0.
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Source of Discretisation Error

‘Defect’ in primal-dual staggering leads to errors in ∇ · (·), ∇(·), ∇× (·):

• Offsets from edge centroids to primal-dual bisectors δe, γe.

• Offsets from primal vertices to dual centroids γf .

• Offsets from dual vertices to primal centroids δf .

normal component: n̂e · ∇(·) (3)

n̂e · ∇Φ ≃ le−1 (Φ2 − Φ1) (4)

Only 2nd-order accurate if γf = 0.
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Source of Discretisation Error

‘Defect’ in primal-dual staggering leads to errors in ∇ · (·), ∇(·), ∇× (·):

• Offsets from edge centroids to primal-dual bisectors δe, γe.

• Offsets from primal vertices to dual centroids γf .

• Offsets from dual vertices to primal centroids δf .

|τk| ξ̄k =

∫
τk

∇× u dA =

∮
∂τk

(u · t̂) ds (5)

≃
3∑
e=1

∫
e
(u · t̂)e dl . (6)

Only 2nd-order accurate if δf = 0.
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Source of Discretisation Error

Unstructured mimetic discretisations require ‘near perfect’ primal-dual meshes to
achieve ≥ 1-order accuracy:

δe → 0, γe → 0, γf → 0, δf → 0.

Not a property of Delaunay-Voronoi pairs (except when resolution is uniform)...
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Using ‘Generalised’ Primal-Duals

Laguerre-Power Tessellations (‘weighted’ Delaunay-Voronoi pairs) allow better
primal-dual meshes to be built — HOT (Hodge Optimised Tessellations):

1de Goes, Memari, Mullen and Desbrun: Weighted triangulations for geometry processing, ACM TOG (2014).

2Mullen, Memari, de Goes, Desbrun: HOT: Hodge-optimised triangulations, ACM TOG (2011).
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Using ‘Generalised’ Primal-Duals

Introduce distribution of vertex weights wi to adjust shape of dual cells relative to
primal to improve ‘shape’ + ‘staggering’ of primal-dual cells.

Power cells formed considering ‘weighted distances’: π(x,xi) = dist(x,xi)
2 − wi .

Enable generation of ‘optimal’ (orthogonal) primal-duals that are more centroidal
and well-centred than Voronoi tessellations.
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Using ‘Generalised’ Primal-Duals

The construction of generalised dual grids hinges on the expression for the position
of dual vertices.

‘Lift’ problem onto a higher-dimensional space; Rd → Rd+1:

{xi, yi} → {xi, yi, wi} with wi ∈ R+ (7)

Given a primal simplex, the associated (weighted) dual vertex is given by:[
x2 − x1 y2 − y1
x3 − x1 y3 − y1

][
xc
yc

]
= (8)

1

2

[
(x2 − x1)2 + (y2 − y1)2 − (w2 − w1)
(x3 − x1)2 + (y3 − y1)2 − (w3 − w1)

]
︸ ︷︷ ︸
‘weighted ’RHS includes a new ∇(w) dependence

(9)

The idea is to choose weights such that the centres (i.e. ‘dual’ vertices) ci = [xc, yc]
are positioned ‘optimally’.
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Optimising ‘Laguerre-Power’ Meshes

Optimise weights to minimise ‘defect’ in staggering between primal and dual cells —
offsets associated with discretisation error in ∇ · (·), ∇(·), ∇× (·):

Given δi = ∥oi −mi∥ , (10)

QD
i (X,W ) =

1

2

(
1−

(
δf

l̄f

)2
)

︸ ︷︷ ︸
‘defect’ at triangle

+
1

2

(
1

3

3∑
e=1

1−
(
δe

le

)2
)

︸ ︷︷ ︸
mean ‘defect’ at edges

. (11)
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Optimising ‘Laguerre-Power’ Meshes

Primal-dual optimisation scheme improves shape and regularity of mesh — centroidal,
orthogonal, well-centred characteristics.

Not optimised:

(|τ |uncentred = 6400)
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Optimised:

(|τ |uncentred = 9)
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Blue: wi ≪ 0

Orange: wi ≫ 0

Weights adjust to valence: < 6: -ve weights, > 6: +ve weights, = 6: no weights.
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Optimising ‘Laguerre-Power’ Meshes

Primal-dual optimisation scheme resolves issues with convergence in L∞.

Voronoi-type mesh; error in fluid height:
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Optimising ‘Laguerre-Power’ Meshes

Primal-dual optimisation scheme resolves issues with convergence in L∞.

Power-type mesh; error in fluid height:
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Optimising ‘Laguerre-Power’ Meshes

Improves L∞ convergence from 0th- to 1st-order, and L2 convergence from 1st-order
to 2nd-order.
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Better resolve turbulent flows!
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How to Optimise the Primal-Dual?

Find a mesh T (x) that minimises a quality/energy-metric Q(x, T )

minQ(x, T ) (12)

Solve by combining standard gradient descent to update positional DoF

xk+1
i = xki − αni ηi∇iQ(xk) . (13)

with topological operators to enhance structure
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How to Optimise the Primal-Dual?

Leads to a reliable ‘worst-first’ hill-climbing optimisation scheme:

function MeshOpt(T (x))
while (not optimised enough)

Build worst-first ordering for positional DoF.

Apply steepest-descent updates for x:

xn+1
i = xni +∆mi ·

∂

∂xi

[
Q j(x, T )

]
. (14)

Accept xn+1
i iff Q(xk) improving.

Collapse/split cells to improve quality.

Update topology of T to recover orthogonality.

end while

Typically successful in practice, but slow to converge (wrt. iterations and runtime).

**Engwirda (2018): Generalised primal-dual grids for unstructured co-volume schemes.
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Learn from Machine Learning

Machine learning community uses ‘momentum’ optimisation methods to train neural
networks (i.e. large unstructured mesh-like systems) — are such approaches useful
for meshing?

‘Momentum’ gradient descent (MGD1): add a ‘gradient-buffer’ gk maintaining an
average of previous steepest descent directions

gki = β gk−1
i + (1− β) ηi∇iQ(xk) , (15)

xk+1
i = xki − αni gki , (16)

where β ∈ [0, 1
2
] is a ‘momentum’ bias that helps scheme ‘burst-through’ shallow

local minima.

(Experimentally) β = 1
3

improves convergence of mesh optimisation scheme by
around factor of 1.5.

1
Nesterov (1983): A method for solving the convex programming problem with convergence rate O(1/k2)
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Learn from Machine Learning

Machine learning community uses ‘momentum’ optimisation methods to train neural
networks (i.e. large unstructured mesh-like systems) — are such approaches useful
here?

‘Quasi-hyperbolic’ momentum (QHM1): add ‘linear-discount’ ζ to gradient buffer

gki = β gk−1
i + (1− β) ηi∇iQ(xk)︸ ︷︷ ︸

‘momentum’ recurrence

, (17)

ζni = αni ζ , (18)

g∗
i = ζni gki + (1− ζni ) ηi∇iQ(xk)︸ ︷︷ ︸

linear ‘discount’

, (19)

xk+1
i = xki − αni g∗

i . (20)

(Experimentally) use of a larger β ← 0.495, ζ ← 0.825 in QHM further improves
convergence of mesh optimisation scheme by another factor of 2.

QHM developed/used by Facebook for training of large ML models.

1
**Ma & Yarats (2018): Quasi-hyperbolic momentum and Adam for deep learning.
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Learn from Machine Learning

Improved Quasi-Hyperbolic Momentum (QHM) optimisation:

function MeshOpt(T (x))
while (not optimised enough)

Build worst-first ordering for positional DoF.

Apply QHM updates for x:

gki = β gk−1
i + (1− β) ηi∇iQ(xk) (21)

g∗
i = ζni gki + (1− ζni ) ηi∇iQ(xk) (22)

xn+1
i = xni +∆mi · g∗i . (23)

Accept xn+1
i iff Q(xk) improving.

Collapse/split cells to improve quality.

Update topology of T to recover orthogonality.

end while

Quite simple modification to standard gradient descent that improves convergence
by factor of 2–3. Only O(1) extra work, O(1) extra space per vertex.
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Results: Primal-dual Meshes for Earth System Models

Build very high-quality primal-dual meshes — centroidal, well-centred, orthogonal,
smooth-grading, boundary conforming...

**Embedded mid-Atlantic coastal-zone: ICoM project, Engwirda et al, 2020.
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Results: Primal-dual Meshes for Earth System Models

Consider problems of varying complexity — all include strong variation in resolution
+ complex geometrical boundaries:

great lakes: 100K cells.

coastal ocean: 400K cells.

global climate: 2.5M cells.

hurricane inundation: 25M cells.

JIGSAW1 library to build initial primal meshes (Frontal-Delaunay); optimise with stan-
dard gradient descent vs momentum scheme (QHM).

Optimisation terminates iff:

• All cells well-centred (non-obtuse).

• No new topological updates.

• DoFs approximately converged: ∆Qi ≤ 1× 10−5.

1www.github.com/dengwirda/jigsaw
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Results: Primal-dual Meshes for Earth System Models

Performance of standard gradient descent (dashed lines) vs momentum scheme
(QHM; solid lines)

QHM improves convergence rate by ≥ 2 on all cases, irrespective of problem com-
plexity.
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Summary & Outlook

Use Laguerre-Power meshes instead of Delaunay-Voronoi pairs!

• Meshing and solving are different sides of the same coin, not parts of
different currencies.

• Improved geometry of primal-dual staggering reduces discretisation error
in mimetic scheme.

• Extend HOT mesh paradigm to optimise Laguerre-Power primal-dual to
maximise accuracy of discretisation.

• Leverage Quasi-Hyperbolic Momentum scheme from ML community to
build optimal Laguerre-Power pairs efficiently.

Optimal Primal-Dual Meshes & Discretisations for Geophysical Fluids — D. Engwirda



Thanks!
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