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Big whorls have little whorls

That feed on their velocity,

And little whorls have lesser whorls

And so on to viscosity — Lewis Richardson, 1920

@ Los Alamos



Geophysical flows are characterised by multiscale turbulence —
a ‘cascade’ of eddies at smaller and smaller length scales
(and larger and larger nonlinearity)

@ Los Alamos



Multiscale geophysical flows

Resolving ‘everything’' at very high-resolution is too computationally expensive —
unstructured meshes used to perform scale-selective eddy resolving simulations

Y 10 km K
resolution,+** mesh
Less®’ transiti

zone .

**North Atlantic Eddy Dynamics: MPAS project, Petersen et al, 2015.

Turbulent ocean dynamics resolved by US-DOE'’s Model for Prediction Across Scales
(MPAS-O).

1@ Los Alamos
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Multiscale geophysical flows

Resolving ‘everything’' at very high-resolution is too computationally expensive —
unstructured meshes used to perform scale-selective eddy resolving simulations
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**North Atlantic Eddy Dynamics: MPAS project, Petersen et al, 2015.

Requires solution of hard meshing problem: grids must be centroidal, well-centred,
orthogonal and smoothly graded.
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‘Mimetic’ Discetisation Schemes

Solve ‘rotating’ Naiver-Stokes system:

1 1
8—u+qhuL:——Vp—vf||u2||+v~(KuVu),
ot £0 2

oh
LV () =0,
o T (hw)
d,
f:—gp7 p=f(¥,p),
2
oY
E‘FV(UIL’):V(KwVQ/J)

fl) - u = u(x,t) velocity, ¢ = % potential vorticity,
h = h(x,t) fluid thickness, 1) conserved tracers.

514 g (Orthogonal) staggered unstructured scheme con-
serves energy, vorticity, enstrophy, mass.

Use of structure-preserving (mimetic) schemes im-
portant wrt. long time-scale dynamics...

...but requires ‘near perfect’ unstructured meshes.
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‘Mimetic’ Discetisation Schemes

Why/what are mimetic / structure-preserving discretisations?

® Numerical schemes that ‘mimic’ the continuous properties of the PDEs —
discrete operators satisfy continuous vector calculus identities.

® Conserving mass is ‘easy’ — conserving higher-order moments of the flow is
hard — discrete Hamiltonian's, sympectic approaches...

® For geophysical flows, conserve energy (kinetic + potential) and enstropy (the
square of potential vorticity) is important.

® Ensures that PDE solution sits on correct manifold in phase space — prevent
unphysical equilibria.

® |mportant for integration of systems over very long time-scales: climate
models require O(1000yr) simulations...
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What can go wrong...?

Error in fluid height; Centroidal Voronoi-type multiscale mesh:

Significant grid-scale imprint a manifestation of poor convergence in the L°°-norm:
mimetic numerics very sensitive to mesh!

Ol.os




What can go wrong...?

Meshes are heavily optimised CVT structures:

Must require something more than standard Delaunay-Voronoi meshes + numerics
can offer...

Los Alamos
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Source of Discretisation Error

‘Defect’ in primal-dual staggering leads to errors in V- (-), V(-), V x (-):

® Offsets from edge centroids to primal-dual bisectors dc, Ye-
® Offsets from primal vertices to dual centroids ;.

® Offsets from dual vertices to primal centroids dy.

/dvv.(uw) dA=¢ (u-n)pds (1)

ad;

\ n
~ Z/(u~ﬁ)e¢e dl )
e=1"7¢

Only 2nd-order accurate if 5 = 0, 7. = 0.
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Source of Discretisation Error

‘Defect’ in primal-dual staggering leads to errors in V- (-), V(-), V x (-):

® Offsets from edge centroids to primal-dual bisectors dc, Ye-
® Offsets from primal vertices to dual centroids ;.

® Offsets from dual vertices to primal centroids dy.

S normal component: fi. - V(-) 3)

n - V()// fe - VO~ [T (Py — 1) (4)

Only 2nd-order accurate if v = 0.
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Source of Discretisation Error

‘Defect’ in primal-dual staggering leads to errors in V- (-), V(-), V x (-):

® Offsets from edge centroids to primal-dual bisectors dc, Ye-
® Offsets from primal vertices to dual centroids ;.

® Offsets from dual vertices to primal centroids d.

o1y

3
~ t)e dl. 6
;/ﬁm ) (6)

) \Tk|§_k=/ VxudA= (u-t)yds (5)

Only 2nd-order accurate if 5y = 0.
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Source of Discretisation Error

Unstructured mimetic discretisations require ‘near perfect’ primal-dual meshes to
achieve > 1-order accuracy:

de =0, ve =0, vs —0,6p — 0.

Not a property of Delaunay-Voronoi pairs (except when resolution is uniform)...
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Using ‘Generalised’ Primal-Duals

Laguerre-Power Tessellations (‘weighted’ Delaunay-Voronoi pairs) allow better
primal-dual meshes to be built — HOT (Hodge Optimised Tessellations):

**HOT

(weights & vertices)

1ge Goes, Memari, Mullen and Desbrun: Weighted triangulations for geometry processing, ACM TOG (2014).
2Mullen, Memari, de Goes, Desbrun: HOT: Hodge-optimised triangulations, ACM TOG (2011).
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Using ‘Generalised’ Primal-Duals

Introduce distribution of vertex weights w; to adjust shape of dual cells relative to
primal to improve ‘shape’ + ‘staggering’ of primal-dual cells.

Power cells formed considering ‘weighted distances’: m(x,x;) = dist(x,x;)? — w; .

Enable generation of ‘optimal’ (orthogonal) primal-duals that are more centroidal
and well-centred than Voronoi tessellations.
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Using ‘Generalised’ Primal-Duals

The construction of generalised dual grids hinges on the expression for the position
of dual vertices.

‘Lift’ problem onto a higher-dimensional space; R% — RI+1:

{xi, yi} = {xi, yi, wi} with w; € Rt (7

Given a primal simplex, the associated (weighted) dual vertex is given by:

|::l:2 -z Y2 — yl] [ﬂﬁc] _ (8)

T3 — 1 Y3 —Y1] |Ye

1 (s —21)% + (v — 11)? — (w2 — wn)
3 [(:é o) + (s — )2 — (s — wn) (%)

‘weighted 'RHS includes a new V (w) dependence

The idea is to choose weights such that the centres (i.e. ‘dual’ vertices) ¢; = [zc, yc]
are positioned ‘optimally’.

Optimal Primal-Dual Meshes & Discretisations for Geophysical Fluids — D. Engwirda



Optimising ‘Laguerre-Power’ Meshes

Optimise weights to minimise ‘defect’ in staggering between primal and dual cells —
offsets associated with discretisation error in V - (), V(-), V x (-):

o:
w. A A:I[“Z
J foe .
.37
m., mf\/:OI
=< .
e N
3
Given ¢; = |jo; — m;]|, (10)
1 sN2\ 11 & 5e\?
D f =
P(X, W)= (1- (L slz2t-(7) ) 1
w3 (- (1)) (65 () @

‘defect’ at triangle mean ‘defect’ at edges
1@ Los Alamos
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Optimising ‘Laguerre-Power’ Meshes

Primal-dual optimisation scheme improves shape and regularity of mesh — centroidal,
orthogonal. well-centred characteristics.
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Optimising ‘Laguerre-Power’ Meshes

Primal-dual optimisation scheme resolves issues with convergence in L°°.

Voronoi-type mesh; error in fluid height:

1@ Los Alamos




Optimising ‘Laguerre-Power’ Meshes

Primal-dual optimisation scheme resolves issues with convergence in L°°.

Power-type mesh; error in fluid height:

1@ Los Alamos




Optimising ‘Laguerre-Power’ Meshes

Improves L°° convergence from Oth- to 1st-order, and L? convergence from 1st-order
to 2nd-order.
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How to Optimise the Primal-Dual?

Find a mesh 7 (x) that minimises a quality/energy-metric Q(x, T)
min Q(x,T) (12)
Solve by combining standard gradient descent to update positional DoF

x; = xf — al i ViQ(xb). (13)

with topological operators to enhance structure




How to Optimise the Primal-Dual?

Leads to a reliable ‘worst-first’ hill-climbing optimisation scheme:

function MeEsHOPT(T (x))
while (not optimised enough)
Build worst-first ordering for positional DoF.
Apply steepest-descent updates for x:

<o par e oo, a9)
ox;

Accept X?Jrl iff Q(x"*) improving.
Collapse/split cells to improve quality.
Update topology of T to recover orthogonality.

end while
Typically successful in practice, but slow to converge (wrt. iterations and runtime).

**Engwirda (2018): Generalised primal-dual grids for unstructured co-volume schemes.
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Learn from Machine Learning

Machine learning community uses ‘momentum’ optimisation methods to train neural
networks (i.e. large unstructured mesh-like systems) — are such approaches useful
for meshing?

‘Momentum’ gradient descent (MGD'): add a ‘gradient-buffer’ g¥ maintaining an
average of previous steepest descent directions
gf =Bel '+ (1-B)nViQ(x"), (15)
k1
x;th=xf —al'gl, (16)
where § € [0, %} is a ‘momentum’ bias that helps scheme ‘burst-through’ shallow
local minima.

(Experimentally) 8 = % improves convergence of mesh optimisation scheme by
around factor of 1.5.

L Nesterov (1983): A method for solving the convex programming problem with convergence rate O (1/k2)
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Learn from Machine Learning

Machine learning community uses ‘momentum’ optimisation methods to train neural
networks (i.e. large unstructured mesh-like systems) — are such approaches useful
here?

‘Quasi-hyperbolic’ momentum (QHM?): add ‘linear-discount’ ¢ to gradient buffer

gl =Bgf '+ (1-B)nViQ(x"), (17)
G =ai(, (18)
g =¢el + (11— ¢ nViQ(xY), (19)

linear ‘discount’

k *
BT = xF _algr. (20)

(Experimentally) use of a larger 8 <+ 0.495, ¢ < 0.825 in QHM further improves
convergence of mesh optimisation scheme by another factor of 2.

QHM developed/used by Facebook for training of large ML models.

1*"‘Ma & Yarats (2018): Quasi-hyperbolic momentum and Adam for deep learning. @ Los Alamos
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Learn from Machine Learning

Improved Quasi-Hyperbolic Momentum (QHM) optimisation:

function MesHOPT(7 (x))
while (not optimised enough)
Build worst-first ordering for positional DoF.

Apply QHM updates for x:

gl =pgl "t + (1 - B)nViQ(x*) (21)
g =l el +(1—¢MmiViQ(x") (22)
xpH =x] + A7 - g (23)

Accept X?Jrl iff Q(x*) improving.
Collapse/split cells to improve quality.
Update topology of T to recover orthogonality.

end while

Quite simple modification to standard gradient descent that improves convergence
by factor of 2-3. Only O(1) extra work, O(1) extra space per vertex.
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Results: Primal-dual Meshes for Earth System Models

Build very high-quality primal-dual meshes — centroidal, well-centred, orthogonal,
smooth-grading, boundary conforming...




Results: Primal-dual Meshes for Earth System Models

Consider problems of varying complexity — all include strong variation in resolution
+ complex geometrical boundaries:

GREAT LAKES: 100K CELLS.

COASTAL OCEAN: 400K CELLS.
GLOBAL CLIMATE: 2.5M CELLS.
HURRICANE INUNDATION: 25M CELLS.

JIGSAW! library to build initial primal meshes (Frontal-Delaunay); optimise with stan-
dard gradient descent vs momentum scheme (QHM).

Optimisation terminates iff:
® All cells well-centred (non-obtuse).
® No new topological updates.

® DoFs approximately converged: AQ; < 1 x 1075,

lyww.github.com/dengwirda/jigsaw
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Results: Primal-dual Meshes for Earth System Models

Performance of standard gradient descent (dashed lines) vs momentum scheme
(QHM; solid lines)
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QHM improves convergence rate by > 2 on all cases, irrespective of problem com-
plexity.

®
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Summary & Outlook

Use Laguerre-Power meshes instead of Delaunay-Voronoi pairs!

® Meshing and solving are different sides of the same coin, not parts of
different currencies.

® Improved geometry of primal-dual staggering reduces discretisation error
in mimetic scheme.

® Extend HOT mesh paradigm to optimise Laguerre-Power primal-dual to
maximise accuracy of discretisation.

® |everage Quasi-Hyperbolic Momentum scheme from ML community to
build optimal Laguerre-Power pairs efficiently.
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Thanks!

ual Meshes & Discretisations for Geophysical Fluid: Engwirda



