

High-order solution-based anisotropic mesh adaptation

The log-simplex method

Feat. Adrien Loseille and Pierre Schrooyen

Olivier Coulaud
Contact: olivier.coulaud@cenaero.be

High-order methods

- ▶ Discontinuous Galerkin *Hartmann, Held, Leicht, Prill, Aerospace Sc. Tech. 2010*
- ▶ Spectral differences *Liu, Vinokur, Wang, J. Comp. Phys. 2006*
- ▶ Residual distributions *Abgrall, Computers and Fluids 2006*

Problematic

- ▶ Memory and time costly
- ▶ Less efficient if the geometry is not high-ordered approximated

Bassi, Rebay, J. Comp. Phys. 1997

High-order methods

- ▶ Discontinuous Galerkin *Hartmann, Held, Leicht, Prill, Aerospace Sc. Tech. 2010*
- ▶ Spectral differences *Liu, Vinokur, Wang, J. Comp. Phys. 2006*
- ▶ Residual distributions *Abgrall, Computers and Fluids 2006*

Problematic

- ▶ Memory and time costly
- ▶ Less efficient if the geometry is not high-ordered approximated

Bassi, Rebay, J. Comp. Phys. 1997

Mesh adaptation

From a solution \mathbf{u} , defined on a domain $\Omega \subset \mathbb{R}^d$, $d = 2, 3$, and a complexity \mathbf{N} , find the best mesh \mathcal{H} with complexity \mathbf{N} which minimizes the high-order interpolation error

$$\|\mathbf{u} - \Pi_k \mathbf{u}\|_{L^p(\Omega)},$$

where $p \geq 1$, $k \geq 1$ and Π_k is the projection onto a finite elements space \mathbb{P}_k

Mesh Adaptation framework

Modify an initial mesh \mathcal{H}_0 according to a prescribed size-field

Input

- ▶ Initial **straight** mesh \mathcal{H}_0 composed of **simplex** elements
- ▶ \mathbb{P}_k solution u on \mathcal{H}_0
- ▶ Complexity N

Output

- ▶ Adapted **straight** mesh with prescribed complexity N

1. Metric-based mesh adaptation
2. From low-order to high-order: log-simplex method
3. Application 1: high-order solution-based mesh adaptation
4. Application 2: curved adapted surface mesh generation

Main idea

Compute geometrical quantities with a custom dot-product

$$\langle x, y \rangle_{\mathcal{M}} = x^t \mathcal{M} y, \quad x, y \in \mathbb{R}^d,$$

with \mathcal{M} a metric \Rightarrow positive definite symmetric matrix of \mathbb{R}^d , $d = 2, 3$.

Main idea

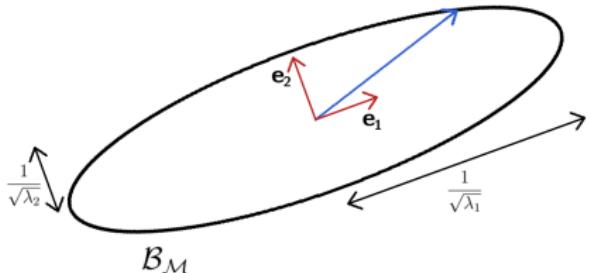
Compute geometrical quantities with a custom dot-product

$$\langle x, y \rangle_{\mathcal{M}} = x^t \mathcal{M} y, \quad x, y \in \mathbb{R}^d,$$

with \mathcal{M} a metric \Rightarrow positive definite symmetric matrix of \mathbb{R}^d , $d = 2, 3$.

Space is stretched with respect to the features of \mathcal{M} .

- ▶ Eigenvalues $\{\lambda_1, \dots, \lambda_d\}$ of \mathcal{M}
 \Rightarrow Anisotropy
- ▶ Eigenvectors $\{e_1, \dots, e_d\}$ of \mathcal{M}
 \Rightarrow Orientation



Main idea

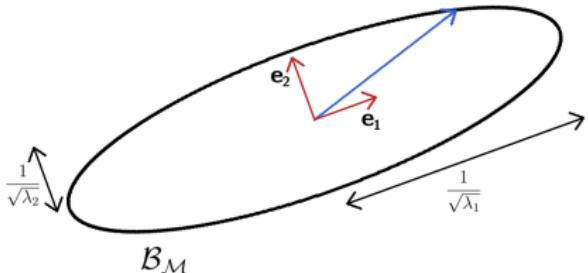
Compute geometrical quantities with a custom dot-product

$$\langle x, y \rangle_{\mathcal{M}} = x^t \mathcal{M} y, \quad x, y \in \mathbb{R}^d,$$

with \mathcal{M} a metric \Rightarrow positive definite symmetric matrix of \mathbb{R}^d , $d = 2, 3$.

Space is stretched with respect to the features of \mathcal{M} .

- ▶ Eigenvalues $\{\lambda_1, \dots, \lambda_d\}$ of \mathcal{M}
 \Rightarrow Anisotropy
- ▶ Eigenvectors $\{e_1, \dots, e_d\}$ of \mathcal{M}
 \Rightarrow Orientation

Riemannian metric-space on $\Omega \subset \mathbb{R}^d$

$$\text{Non-constant } \mathbf{M} = (\mathcal{M}(x))_{x \in \Omega}$$

Unit element with respect to \mathcal{M}

An element \mathcal{T} is said to be unit with respect to \mathcal{M} if its edges $e_i, i \in \{1, \dots, d + 1\}$ satisfy

$$|e_i|_{\mathcal{M}} = \sqrt{e_i^t \mathcal{M} e_i} = 1.$$

Unit element with respect to \mathcal{M}

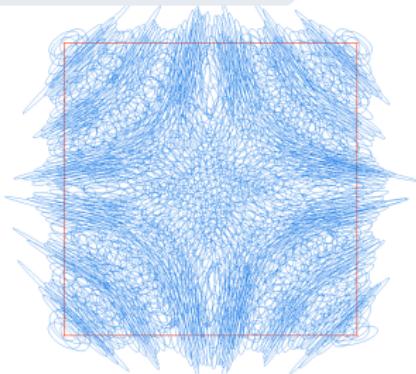
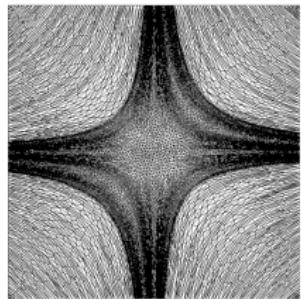
An element \mathcal{T} is said to be unit with respect to \mathcal{M} if its edges $e_i, i \in \{1, \dots, d + 1\}$ satisfy

$$|e_i|_{\mathcal{M}} = \sqrt{e_i^t \mathcal{M} e_i} = 1.$$

Unit mesh with respect to \mathbf{M}

Each element \mathcal{T} of the mesh is unit with respect to $\mathbf{M} = (\mathcal{M}(x))_{x \in \Omega}$.

In practical \Rightarrow quasi unit mesh



Unit element with respect to \mathcal{M}

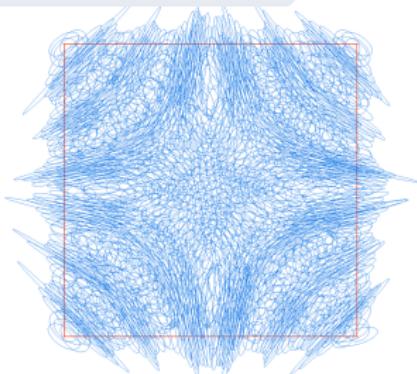
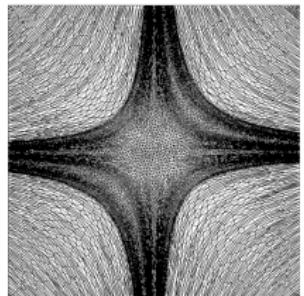
An element \mathcal{T} is said to be unit with respect to \mathcal{M} if its edges $e_i, i \in \{1, \dots, d + 1\}$ satisfy

$$|e_i|_{\mathcal{M}} = \sqrt{e_i^t \mathcal{M} e_i} = 1.$$

Unit mesh with respect to \mathbf{M}

Each element \mathcal{T} of the mesh is unit with respect to $\mathbf{M} = (\mathcal{M}(x))_{x \in \Omega}$.

In practical \Rightarrow quasi unit mesh



Mesh feature

Length of a segment ab

Element area / volume

Complexity

Metric-space transcription

$$\int_0^1 \sqrt{ab^t \mathcal{M}(a + tab)ab} dt$$

$$C(d) (\det(\mathcal{M}))^{-\frac{1}{2}}$$

$$\int_{\Omega} \sqrt{\det(\mathcal{M}(x))} dx$$

Metric-based mesh adaptation problem

Given a solution u on Ω and an arbitrary polynomial order k , find a metric-space $\mathbf{M}_{\text{opt}} = (\mathcal{M}_{\text{opt}}(x))_{x \in \Omega}$ with complexity N such that a unit mesh with respect to \mathbf{M}_{opt} minimizes

$$\|\mathbf{u} - \Pi_k \mathbf{u}\|_{L^p(\Omega)}.$$

Metric-based mesh adaptation problem

Given a solution u on Ω and an arbitrary polynomial order k , find a metric-space $\mathbf{M}_{\text{opt}} = (\mathcal{M}_{\text{opt}}(x))_{x \in \Omega}$ with complexity N such that a unit mesh with respect to \mathbf{M}_{opt} minimizes

$$\|\mathbf{u} - \Pi_k \mathbf{u}\|_{L^p(\Omega)}.$$

\mathbb{P}_k error estimate

For x_0 a vertex of the mesh \mathcal{H} , it comes

$$|(u - \Pi_k u)(x)| \leq |d^{(k+1)} u(x_0)(x - x_0)| + o(|x - x_0|_2^{k+1}).$$

Metric-based mesh adaptation problem

Given a solution u on Ω and an arbitrary polynomial order k , find a metric-space $\mathbf{M}_{\text{opt}} = (\mathcal{M}_{\text{opt}}(x))_{x \in \Omega}$ with complexity N such that a unit mesh with respect to \mathbf{M}_{opt} minimizes

$$\|\mathbf{u} - \Pi_k \mathbf{u}\|_{L^p(\Omega)}.$$

\mathbb{P}_1 error estimate: Hessian-based methods

For x_0 a vertex of the mesh \mathcal{H}_0 , it comes

$$|(u - \Pi_1 u)(x)| \leq (x - x_0)^t |\mathbf{H}_u(x_0)| (x - x_0) + o(|x - x_0|_2^2).$$

- ▶ Calculus of variations $\implies \mathcal{M}_{\text{opt}}(x_0) = C(x_0, p, N) |\mathbf{H}_u(x_0)|$

Metric-based mesh adaptation problem

Given a solution u on Ω and an arbitrary polynomial order k , find a metric-space $\mathbf{M}_{\text{opt}} = (\mathcal{M}_{\text{opt}}(x))_{x \in \Omega}$ with complexity N such that a unit mesh with respect to \mathbf{M}_{opt} minimizes

$$\|\mathbf{u} - \Pi_k \mathbf{u}\|_{L^p(\Omega)}.$$

\mathbb{P}_k , $k > 1$ error estimate

For x_0 a vertex of the mesh \mathcal{H}_0 , it comes

$$|(u - \Pi_k u)(x)| \leq |P(x - x_0)| + o(|x - x_0|_2^{k+1}),$$

with $P = d^{(k+1)}u(x_0)$ a homogeneous polynomial of degree $k + 1$.

Metric-based mesh adaptation problem

Given a solution u on Ω and an arbitrary polynomial order k , find a metric-space $\mathbf{M}_{\text{opt}} = (\mathcal{M}_{\text{opt}}(x))_{x \in \Omega}$ with complexity N such that a unit mesh with respect to \mathbf{M}_{opt} minimizes

$$\|\mathbf{u} - \Pi_k \mathbf{u}\|_{L^p(\Omega)}.$$

\mathbb{P}_k , $k > 1$ error estimate

For x_0 a vertex of the mesh \mathcal{H}_0 , it comes

$$|(u - \Pi_k u)(x)| \leq ((x - x_0)^t \mathcal{Q}(x_0) (x - x_0))^{\frac{k+1}{2}} + o(|x - x_0|_2^{k+1}).$$

1. Find a metric $\mathcal{Q}(x_0)$ such that $|P(x)| \leq (x^t \mathcal{Q}(x_0) x)^{\frac{k+1}{2}}$

Metric-based mesh adaptation problem

Given a solution u on Ω and an arbitrary polynomial order k , find a metric-space $\mathbf{M}_{\text{opt}} = (\mathcal{M}_{\text{opt}}(x))_{x \in \Omega}$ with complexity N such that a unit mesh with respect to \mathbf{M}_{opt} minimizes

$$\|\mathbf{u} - \Pi_k \mathbf{u}\|_{L^p(\Omega)}.$$

\mathbb{P}_k , $k > 1$ error estimate

For x_0 a vertex of the mesh \mathcal{H} , it comes

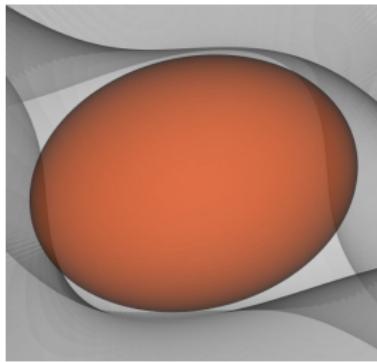
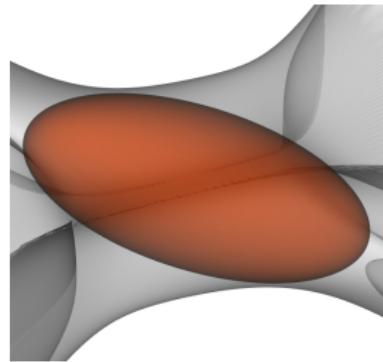
$$|(u - \Pi_k u)(x)| \leq ((x - x_0)^t \mathcal{Q}(x_0) (x - x_0))^{\frac{k+1}{2}} + o(|x - x_0|_2^{k+1}).$$

1. Find a metric $\mathcal{Q}(x_0)$ such that $|P(x)| \leq (x^t \mathcal{Q}(x_0) x)^{\frac{k+1}{2}}$
2. Calculus of variations $\implies \mathcal{M}_{\text{opt}}(x_0) = C(x_0, p, N) \mathcal{Q}(x_0)$

Metric optimization problem

For P a homogeneous polynomial of degree $k + 1$, find a metric \mathcal{Q} such that

- $|P(x)| = 1 \implies x^t \mathcal{Q} x \leq 1$
- $\mathcal{B}_{\mathcal{Q}}$ has the largest volume $\Leftrightarrow \det(\mathcal{Q})$ is minimal



Non-linear problem !

Principle

1. Instead of \mathcal{Q} , consider $\mathcal{L} = \log(\mathcal{Q})$
 - $\text{trace}(\mathcal{L})$ has to be minimized (since $\det(\mathcal{Q}) = \exp(\text{trace}(\mathcal{L}))$)

Principle

1. Instead of \mathcal{Q} , consider $\mathcal{L} = \log(\mathcal{Q})$

- $\text{trace}(\mathcal{L})$ has to be minimized (since $\det(\mathcal{Q}) = \exp(\text{trace}(\mathcal{L}))$)
⇒ Introduce non-linear constraints on \mathcal{L}

Principle

1. Instead of \mathcal{Q} , consider $\mathcal{L} = \log(\mathcal{Q})$
 - ▶ $\text{trace}(\mathcal{L})$ has to be minimized (since $\det(\mathcal{Q}) = \exp(\text{trace}(\mathcal{L}))$)
⇒ Introduce non-linear constraints on \mathcal{L}
2. Replace non-linear constraints on \mathcal{L} by approximated linear ones

Principle

1. Instead of \mathcal{Q} , consider $\mathcal{L} = \log(\mathcal{Q})$
 - ▶ $\text{trace}(\mathcal{L})$ has to be minimized (since $\det(\mathcal{Q}) = \exp(\text{trace}(\mathcal{L}))$)
⇒ Introduce non-linear constraints on \mathcal{L}
2. Replace non-linear constraints on \mathcal{L} by approximated linear ones

Log matrix optimization problem

For P a homogeneous polynomial of degree $k + 1$, find a symmetric matrix \mathcal{L} such that

- ▶ $|P(x)| = 1 \implies x^t \mathcal{L} x \geq -|x|_2^2 \log(|x|_2^2)$
- ▶ $\text{trace}(\mathcal{L})$ is minimal

Principle

1. Instead of \mathcal{Q} , consider $\mathcal{L} = \log(\mathcal{Q})$
 - ▶ $\text{trace}(\mathcal{L})$ has to be minimized (since $\det(\mathcal{Q}) = \exp(\text{trace}(\mathcal{L}))$)
⇒ Introduce non-linear constraints on \mathcal{L}
2. Replace non-linear constraints on \mathcal{L} by approximated linear ones

Log matrix optimization problem

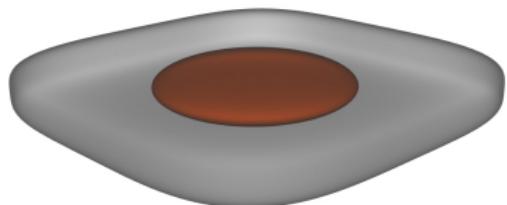
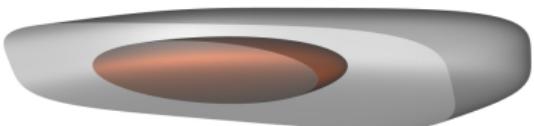
For P a homogeneous polynomial of degree $k + 1$, find a symmetric matrix \mathcal{L} such that

- ▶ $|P(x)| = 1 \implies x^t \mathcal{L} x \geq -|x|_2^2 \log(|x|_2^2)$
- ▶ $\text{trace}(\mathcal{L})$ is minimal

Advantages

1. Cost function and constraints are linear
2. Only consider a finite set of points $\{x_1, \dots, x_n\}$
⇒ Solved by a classical simplex algorithm

How to recover the initial constraints ?



Iterative process

1. Choose a set $\{x_1, \dots, x_n\} \in \mathbb{R}^d$ such that $|P(x_i)| = 1$
2. Compute the optimal symmetric matrix \mathcal{L} and its associated metric Q
3. Perform the change of variable $y = Q^{\frac{1}{2}}x$
 \Rightarrow replace P by $P \circ Q^{-\frac{1}{2}}$

If Q converges, the log constraints and the initial ones are **equivalent**.

Mesh adaptation schedule

1. Compute the high-order solution u
2. Compute the high-order differential $d^{(k+1)}u$
3. Compute the metric \mathcal{Q} approximating $d^{(k+1)}u$
4. Derive the optimal metric-field $\mathcal{M} = C(k, N)\mathcal{Q}$ such that $C(\mathcal{M}) = N$
5. Adapt the mesh

Mesh adaptation schedule

1. Compute the high-order solution u
2. Compute the high-order differential $d^{(k+1)}u$
3. Compute the metric \mathcal{Q} approximating $d^{(k+1)}u$
4. Derive the optimal metric-field $\mathcal{M} = C(k, N)\mathcal{Q}$ such that $C(\mathcal{M}) = N$
5. Adapt the mesh

Main features

- ▶ Global control of the interpolation error
- ▶ Every scale of the solution is caught
- ▶ Arbitrary order k
- ▶ Any kind of polynomial interpolations
- ▶ Consistent with the Hessian-based methods if $k = 1$

High-order solver: Argo

Discontinuous Galerkin high-order multiphysics solver

Applications

- Turbomachinery
- External flow
- Ablation
- Additive Manufacturing
- Thermodynamics

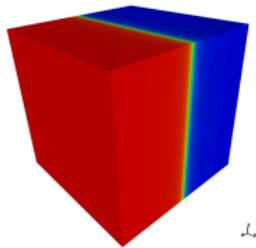
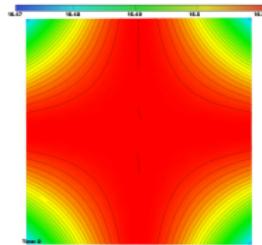
Mesh adapter: MAdLib

Open source mesh-adaptation library

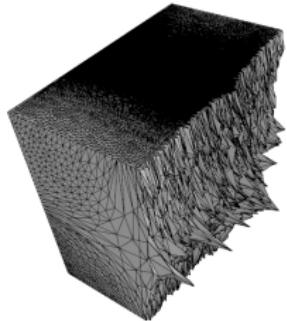
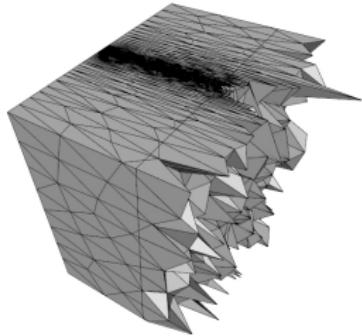
Functionalities

- Metric-based mesh-adaptation
- High-order solution-based mesh adaptation
- High-order surface mesh generation
- Level-set conforming mesh generation

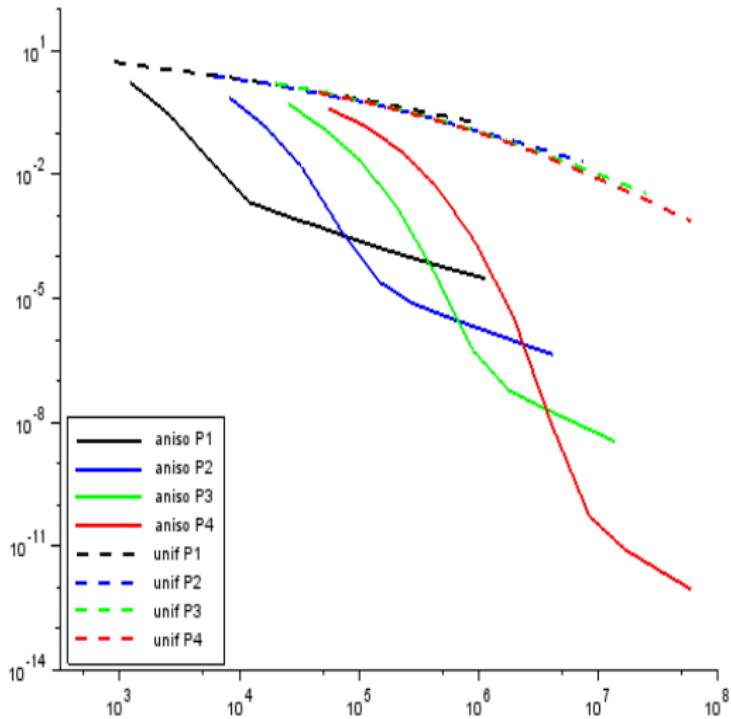
- $\Omega = \left[-\frac{1}{2}, \frac{1}{2}\right]^3$
- $u(x, y, z) = 10 \arctan(100x) + \cos(yz)$



\mathbb{P}_1 , \mathbb{P}_2 and \mathbb{P}_3 adapted meshes (around 350k degrees of freedom).



Interpolation error with respect to number of dofs

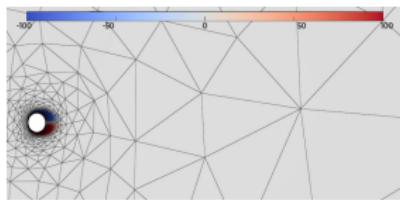


Flow features

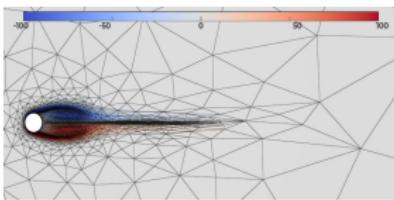
- Compressible flow
- Reynolds 185

Adaptation features

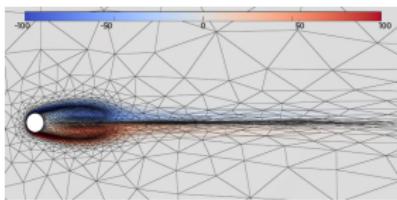
- Adapted to the \mathbb{P}_2 vorticity
- Adapted every 5 time steps



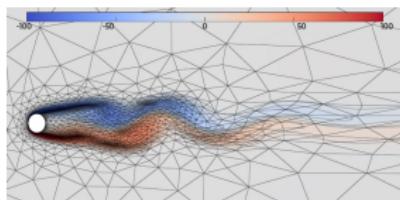
(a) 2.5e-02s



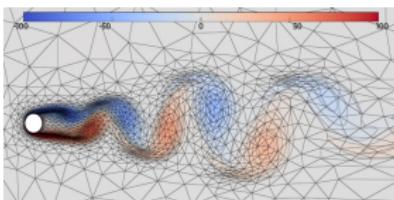
(b) 3.5e-01s



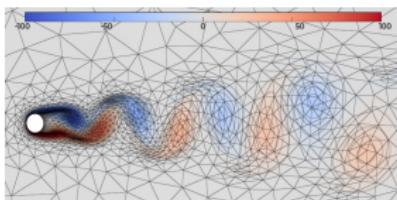
(c) 6.5e-01s



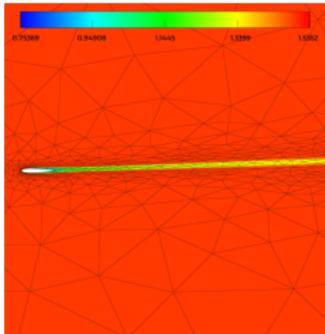
(d) 1.2s



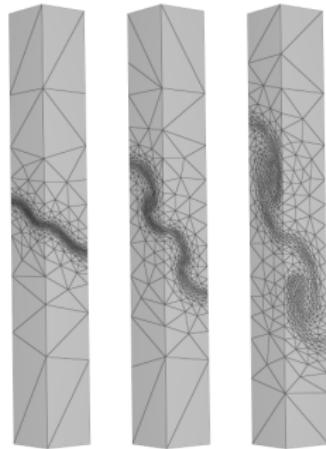
(e) 1.5s



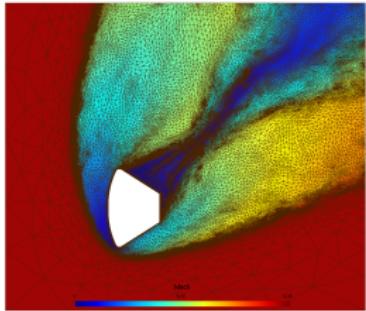
(f) 1.7s



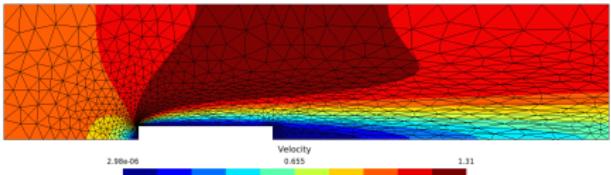
\mathbb{P}_4 flow on a Naca12 geometry



\mathbb{P}_2 Rayleigh-Taylor instability

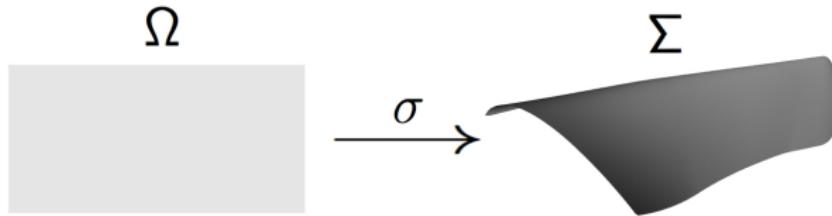


\mathbb{P}_1 hypersonic flow



\mathbb{P}_2 flow around a step

Surface parameterization



Purpose

Input

- CAD model
- \mathbb{P}_1 initial mesh \mathcal{H}_0
- Complexity N

Output

- Adapted curved mesh \mathcal{H}^k with prescribed complexity N

High-order surface mesh generation

Tangent plane \mathcal{P}_{x_0} in $x_0 = \sigma(u_0, v_0) \in \Sigma$.

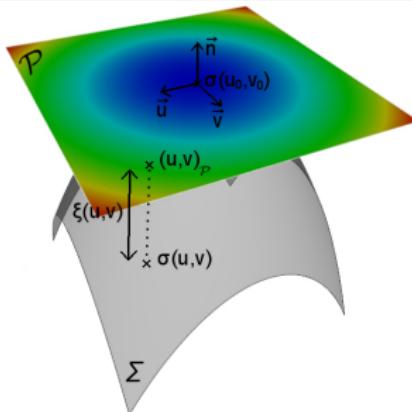
- ▶ Local coordinates system $\mathcal{B}_{\mathcal{P}} = (x_0, \vec{u}, \vec{v})$:
- ▶ Normal vector $\vec{n} = \vec{u} \wedge \vec{v}$.

Local "gap" function on \mathcal{P}_{x_0}

$$\begin{array}{ccc} \mathcal{U} \subset \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (u, v)_{\mathcal{P}} & \longmapsto & \xi((u, v)_{\mathcal{P}}) \end{array}$$

Gap between the surface
and its tangent plane

In the normal direction

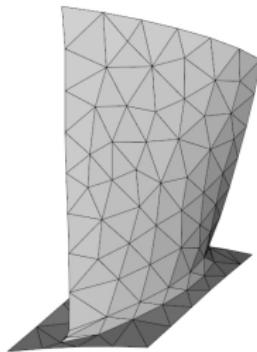


Principle

1. At each vertex x of \mathcal{H}_0 , build a high-order representation of ξ
2. Use the log-simplex method to get a 2D optimal metric on \mathcal{P}_x
3. Map the 2D metric to the 3D physical space
4. Adapt and curve the mesh

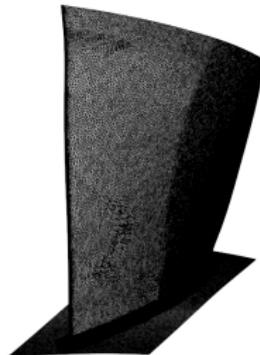
Initial linear mesh

- ▶ 149 vertices
- ▶ 276 triangles



Linear adapted mesh

- ▶ 65800 vertices
- ▶ 131176 triangles

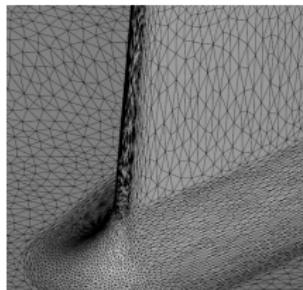


\mathbb{P}_2 adapted mesh

- ▶ 65254 dof
- ▶ 32551 \mathbb{P}_2 triangles

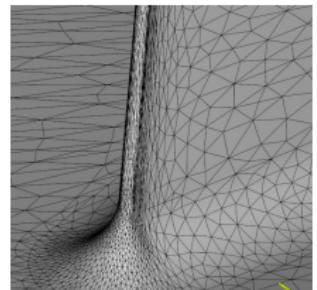
\mathbb{P}_1 mesh

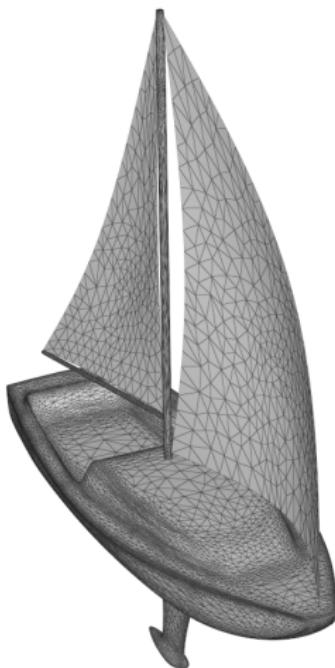
Zoom



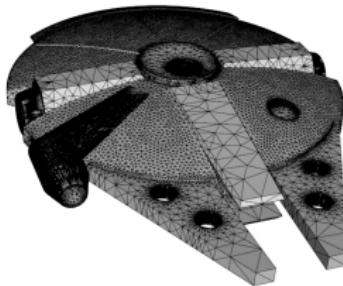
\mathbb{P}_2 mesh

Zoom

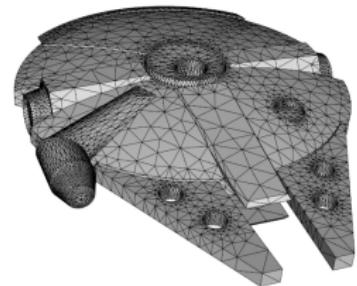
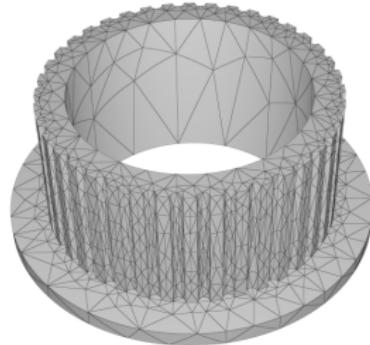




\mathbb{P}_3 sail boat



\mathbb{P}_1 vs \mathbb{P}_2 millenium falcon



\mathbb{P}_3 coarse Fender bearing

Achievements

- ▶ High-order solution-based mesh adaptation
- ▶ Curved surface-based mesh adaptation

Limitations

- ▶ Smooth solution
- ▶ Fixed interpolation order

Perspectives

- ▶ H-p adaptation
- ▶ Curve volume mesh

PROD-F-015-02

Thank you !