Per-Olof Persson, Arjun Narayanan, Lewis Pan

Department of Mathematics, University of California, Berkeley
Mathematics Department, Lawrence Berkeley National Laboratory

Tetrahedron VII: Seventh Workshop on Grid Generation for Numerical Computations

<
University offCalifornia A
61’ é ey October 11, 2023 f(reeeer ‘m‘

@ Widely believed that high-order accurate methods will be required for challenging
simulations (turbulent flows, wave propagation, etc)

@ In addition, fully unstructured meshes are necessary to handle complex geometries,
with adapted resolution and full automation

@ Goal: Develop robust, efficient, and accurate high-order methods

A Face Upwinded Spectral Element Method (FUSE) for Conservation Laws

Scientific Achievement
A new stabilization scheme for high-order continuous Spectral Element
Methods which is provable convergent up to any order.

Significance and Impact

The work has the potential to drastically improve the performance of high-order
methods, which are widely believed to be required for accurate predictions of
turbulent flows and problems with waves and non-linear interactions.

Technical Approach

* Most stabilized schemes for fluids and other conservation laws are based
on discontinuous formulations (e.g., the discontinuous Galerkin method)

« A remarkably simple way to stabilize continuous methods: Inspired by finite
difference methods, choose the full upwind stencil only for face nodes

« Provably high-order convergent for a non-standard node distribution

« In addition, a line-based sparsity patterns bring the Jacobian cost from
0(pP) to 0(pD), for polynomial degree p in D dimensions

PlI(s)/Facility Lead(s): Per-Olof Persson, LBNL Math Group

ASCR Program: Base Math

ASCR PM: Steven Lee

Publication(s) for this work:

Y. Pan, P.-O. Persson, “A Face-Upwinded Spectral Element Method on Unstructured Quadrilateral
Meshes,” Journal of Computational Physics (in review)

Y. Pan, P.-O. Persson, “A Stabilized Face-Upwinded High-Order Method for Incompressible Flows,”
Proc. of 2023 AIAA AVIATION, June 2023.

Sparsity pattern for
100 By ! FUSE vs DG, at

: . . polynomial degree 3.
Due to continuous
fields and line-based
sparsity patterns, the
Jacobian matrices are
more than 4 times
cheaper. This effect
increases in 3D and for

0 200 400 600
nz = 11392

higher degrees.

Face-Upwinding for
unstructured grids.
For general non-
linear roblems, the
upwinding
directions depend
on the solution.
Also note the line-
based sparsity

pattern.
[,,; -

proj.a proja

~

7 U.S. DEPARTMENT OF Ofﬂce Of
@ EN ERG Science

. l'n‘t%\\['\'ﬂ]f'.\ﬁfnm; m
BLr C C} BERKELEY LAB

@ Use full-space optimization to align high-order curved meshes with discontinuities
@ Error estimator based on a p-adaptive residual:
i (Unp) = /8 . U HUE,, Uy yon) dS — /K F(Unp) : Vipyy dV
@ Minimize fur(u,x) := 1R(u,x)"R(u,x) to align mesh to shocks
@ Solve with efficient SQP solver based on a full-space approach

N2

Ayl

Zahr, Persson, (JCP 2018), Zahr, Shi, Persson (JCP 2020/22), Zahr et al (multiple).

@ Define a “game” for automatic block mesh improvement:
@ “Moves”: Local or global topological operations (e.g. “flips”)
e “Score”: Measure of irregularity of the mesh s = Z |A]

@ Use a half-edge mesh structure to define a CNN—ti/pe network which extends to fully
unstructured quadrilateral meshes

@ Train on random geometries, using the PPO algorithm on GPUs

@ Consistently produces close-to-optimal meshes

F' L s

softmax
3
VS
SN
(V)
N———"

N g h
2V % 013 '
-
20 o 7o 100 150 130 150 2600
sssss

[1] Narayanan, Pan, Persson. Learning topological operations on meshes with application to block

decomposition of polygons. In review & arXiv:2309.06484.

Live Mesh Demo

state

reward

R,

. Rt+1

N\

<%

4 St+1

action
A,

10% states

’ Finite state-space I S
‘ Finite action-space | i f#“%

‘ 1070 states I

T
T

T
HHHH

Tabular methods Sampling based methods
Iterative methods with - Monte Carlo Tree Search
provable convergence - DeepRL

H(at|st 7) P(St-l—llst) CLt)

Policy: Probability distribution State transition probability
over actions

H
T = 80,00, ---,SH; OH R(r) =) R(st,a)
t=0

State — action trajectory Cumulative returns of trajectory

U(6) = E [R(r);) .
=Y P(r0)R(r) 0" = argmax U (6)

= E [Vglog(P(r;0))R(7)] ~ -3 Vilog(P(r:0)) i)

Edge-flip Edge-split

Collapse

Split-Collapse

© 6] 9] © 6]

2 4 2 4
(2] © 18] (2] ©

1 3 1 3
o 4] o o 4]

Global Split Global Cleanup

Given:
@ Mesh m

@ Desired degree of vertices d*:

e 360/ interior vertex
max (|6/a] +1,2) boundary vertex

where o = 60 for triangles, 90 for quads,
and ¢ is the angle of a boundary point.

@ Define A; =d; — dz*
minimize s = > |A|

Note that:

o S*:‘ZA,' §Z|A,|=S

@ s* is invariant under mesh edits.

This means s* is a bound on the best possible
improved mesh — use for a normalized opti-
mality score.

The problem poses several challenges:
@ Discrete decisions
@ Fully unstructured
@ Dynamic data-structure
Solution methods need to be able to:
@ Represent and understand mesh topology

@ Efficiently implement mesh edits

Action: Half-edge + type

IS Ions uscd (o ropresent state

Template: Ordered sequence of vertices around each half-edge

@ State: Irregularity and degree of vertices in template
@ Action: Flip, split, collapse, etc.
@ Reward: r, = s, — s:41
Training procedure:
@ Generate random 10-30 sided polygons
@ Initial mesh by Delaunay refinement, split using Catmull-Clark for quads
@ Terminate if s* = s or @ maximum number of steps taken

@ Monitor normalized returns

NF X NUM. HALF EDGES

softmax
=
/N
=
Va)
N———

S

Trained in self-play by Proximal Policy Optimization (PPO) algorithm

Schulman, John, et al. Proximal policy optimization algorithms arXiv:1707.06347 (2017).

1.0

0.8

i

\ LT
I WOV TR

o
:

w
E

Mean Returns

IS
IS

Normalized returns

0.2 1

- 0.0 T
0 250 500 750 1000 1250 1500 1750 2000 0 20 40 60
PPO Iterations Number of steps

@
o

Average performance over training history Evaluating the trained agent on multiple rollouts

Performance of the triangle mesh agent over the training history.

Triangular meshing
Example 1
Step 0 (out of 27)

Triangular meshing
Example 1
Step 1 (out of 27)

Triangular meshing
Example 1
Step 2 (out of 27)

Triangular meshing
Example 1
Step 3 (out of 27)

Trian::;:pr:mee:hing AVA'NA‘A
Step 4 (out of 27) vNNNA‘
QVAVAV%

[N
FR

A
%X‘V"NVAVAV
Fuvavavavyl

RREE

Triangular meshing
Example 1
Step 11 (out of 27)

Triangular meshing
Example 1
Step 12 (out of 27)

Triangular meshing
Example 1
Step 13 (out of 27)

Triangular meshing
Example 1
Step 14 (out of 27)

Triangular meshing
Example 1
Step 15 (out of 27)

Triangular meshing
Example 1
Step 16 (out of 27)

Triangular meshing
Example 1
Step 17 (out of 27)

NAVAY:

AVAVAVQ

1

<A

4

Triangular meshing
Example 1
Step 18 (out of 27)

Triangular meshing
Example 1
Step 19 (out of 27)

Triangular meshing
Example 1
Step 20 (out of 27)

Triangular meshing
Example 1
Step 21 (out of 27)

Triangular meshing
Example 1
Step 22 (out of 27)

Triangular meshing
Example 1
Step 23 (out of 27)

Triangular meshing
Example 1
Step 24 (out of 27)

Triangular meshing
Example 1
Step 25 (out of 27)

Triangular meshing
Example 1
Step 26 (out of 27)

Triangular meshing
Example 1
Step 27 (out of 27)

1.00 1.0
/ .‘, 7]
0.75 ’ . ;
0.8 L e AN B
0.50 - * il
it
g 02 éoe [% A
g = il
ncz 0.00 ﬁ 0
< 025 g 0.4 y J
i
-0.50 ,‘
024
-0.75
-1.00 0.0 T
0 250 500 750 1000 1250 1500 1750 2000 [10 20 30 40 50 60 70 80
PPO Iterations Number of steps
Average performance over training history Evaluating the trained agent on multiple rollouts

Performance of the quadrilateral mesh agent over the training history.

13/1

Block mesh decomposition
Example 1
Step 2 (out of 19)

9/1

Block mesh decomposition
Example 1
Step 3 (out of 19)

9/1

Block mesh decomposition
Example 1
Step 4 (out of 19)

9/1

Block mesh decomposition
Example 1
Step 5 (out of 19)

9/1

Block mesh decomposition
Example 1
Step 6 (out of 19)

7/1

Block mesh decomposition
Example 1
Step 7 (out of 19)

7/1

Block mesh decomposition
Example 1
Step 8 (out of 19)

5/1

Block mesh decomposition
Example 1
Step 9 (out of 19)

3/1

Block mesh decomposition
Example 1
Step 10 (out of 19)

3/1

Block mesh decomposition
Example 1
Step 11 (out of 19)

3/1

Block mesh decomposition
Example 1
Step 12 (out of 19)

3/1

Block mesh decomposition
Example 1
Step 13 (out of 19)

5/1

Block mesh decomposition
Example 1
Step 14 (out of 19)

3/1

Block mesh decomposition
Example 1
Step 15 (out of 19)

3/1

Block mesh decomposition
Example 1
Step 16 (out of 19)

3/1

Block mesh decomposition
Example 1
Step 17 (out of 19)

3/1

Block mesh decomposition
Example 1
Step 18 (out of 19)

1/1

Block mesh decomposition
Example 1
Step 19 (out of 19)

13/1

Block mesh decomposition
Example 2
Step 2 (out of 12)

13/1

Block mesh decomposition
Example 2
Step 3 (out of 12)

11/1

Block mesh decomposition
Example 2
Step 4 (out of 12)

11/1

Block mesh decomposition
Example 2
Step 5 (out of 12)

9/1

Block mesh decomposition
Example 2
Step 6 (out of 12)

7/1

Block mesh decomposition
Example 2
Step 7 (out of 12)

5/1

Block mesh decomposition
Example 2
Step 8 (out of 12)

5/1

Block mesh decomposition
Example 2
Step 9 (out of 12)

3/1

Block mesh decomposition
Example 2
Step 10 (out of 12)

3/1

Block mesh decomposition
Example 2
Step 11 (out of 12)

1/1

Block mesh decomposition
Example 2
Step 12 (out of 12)

U

on

[T

@ Representation of mesh topology for neural networks
@ Unified method to optimize connectivity of triangular and quadrilateral meshes
@ Heuristics-free method that learns rich behavior from self-play

@ Future work: Combine with Monte Carlo Tree Search, more complex geometries,
different formulations, optimize for element quality, 3D

[1] Narayanan, Pan, Persson. Learning topological operations on meshes with application to block

decomposition of polygons. In review & arXiv:2309.06484.

	anm6:
	6.1:
	6.0:
	anm5:
	5.1:
	5.0:
	anm4:
	4.1:
	4.0:
	anm3:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.1:
	2.0:
	anm1:
	1.1:
	1.0:
	anm0:
	0.1:
	0.0:

