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@ Widely believed that high-order accurate methods will be required for challenging
simulations (turbulent flows, wave propagation, etc)

@ In addition, fully unstructured meshes are necessary to handle complex geometries,
with adapted resolution and full automation

@ Goal: Develop robust, efficient, and accurate high-order methods




A Face Upwinded Spectral Element Method (FUSE) for Conservation Laws

Scientific Achievement
A new stabilization scheme for high-order continuous Spectral Element
Methods which is provable convergent up to any order.

Significance and Impact

The work has the potential to drastically improve the performance of high-order
methods, which are widely believed to be required for accurate predictions of
turbulent flows and problems with waves and non-linear interactions.

Technical Approach

* Most stabilized schemes for fluids and other conservation laws are based
on discontinuous formulations (e.g., the discontinuous Galerkin method)

« A remarkably simple way to stabilize continuous methods: Inspired by finite
difference methods, choose the full upwind stencil only for face nodes

« Provably high-order convergent for a non-standard node distribution

« In addition, a line-based sparsity patterns bring the Jacobian cost from
0(pP) to 0(pD), for polynomial degree p in D dimensions
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@ Use full-space optimization to align high-order curved meshes with discontinuities
@ Error estimator based on a p-adaptive residual:
i (Unp) = /8 . U HUE,, Uy yon) dS — /K F(Unp) : Vipyy dV
@ Minimize fur(u,x) := 1R(u,x)"R(u,x) to align mesh to shocks
@ Solve with efficient SQP solver based on a full-space approach
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Zahr, Persson, (JCP 2018), Zahr, Shi, Persson (JCP 2020/22), Zahr et al (multiple).




@ Define a “game” for automatic block mesh improvement:
@ “Moves”: Local or global topological operations (e.g. “flips”)
e “Score”: Measure of irregularity of the mesh s = Z |A]

@ Use a half-edge mesh structure to define a CNN—ti/pe network which extends to fully
unstructured quadrilateral meshes

@ Train on random geometries, using the PPO algorithm on GPUs

@ Consistently produces close-to-optimal meshes
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[1] Narayanan, Pan, Persson. Learning topological operations on meshes with application to block

decomposition of polygons. In review & arXiv:2309.06484.



Live Mesh Demo
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Given:
@ Mesh m

@ Desired degree of vertices d*:

e 360/ interior vertex
max (|6/a] +1,2) boundary vertex

where o = 60 for triangles, 90 for quads,
and ¢ is the angle of a boundary point.

@ Define A; =d; — dz*
minimize s = > |A|




Note that:

o S*:‘ZA,' §Z|A,|=S

@ s* is invariant under mesh edits.

This means s* is a bound on the best possible
improved mesh — use for a normalized opti-
mality score.




The problem poses several challenges:
@ Discrete decisions
@ Fully unstructured
@ Dynamic data-structure
Solution methods need to be able to:
@ Represent and understand mesh topology

@ Efficiently implement mesh edits




Action: Half-edge + type




IS Ions uscd (o ropresent state

Template: Ordered sequence of vertices around each half-edge




@ State: Irregularity and degree of vertices in template
@ Action: Flip, split, collapse, etc.
@ Reward: r, = s, — s:41
Training procedure:
@ Generate random 10-30 sided polygons
@ Initial mesh by Delaunay refinement, split using Catmull-Clark for quads
@ Terminate if s* = s or @ maximum number of steps taken

@ Monitor normalized returns
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Trained in self-play by Proximal Policy Optimization (PPO) algorithm

Schulman, John, et al. Proximal policy optimization algorithms arXiv:1707.06347 (2017).
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Triangular meshing
Example 1
Step 0 (out of 27)




Triangular meshing
Example 1
Step 1 (out of 27)




Triangular meshing
Example 1
Step 2 (out of 27)




Triangular meshing
Example 1
Step 3 (out of 27)
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Triangular meshing
Example 1
Step 11 (out of 27)




Triangular meshing
Example 1
Step 12 (out of 27)




Triangular meshing
Example 1
Step 13 (out of 27)




Triangular meshing
Example 1
Step 14 (out of 27)




Triangular meshing
Example 1
Step 15 (out of 27)




Triangular meshing
Example 1
Step 16 (out of 27)




Triangular meshing
Example 1
Step 17 (out of 27)
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Triangular meshing
Example 1
Step 18 (out of 27)




Triangular meshing
Example 1
Step 19 (out of 27)




Triangular meshing
Example 1
Step 20 (out of 27)




Triangular meshing
Example 1
Step 21 (out of 27)




Triangular meshing
Example 1
Step 22 (out of 27)




Triangular meshing
Example 1
Step 23 (out of 27)




Triangular meshing
Example 1
Step 24 (out of 27)




Triangular meshing
Example 1
Step 25 (out of 27)




Triangular meshing
Example 1
Step 26 (out of 27)




Triangular meshing
Example 1
Step 27 (out of 27)
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Block mesh decomposition
Example 1
Step 2 (out of 19)
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Block mesh decomposition
Example 1
Step 3 (out of 19)
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Block mesh decomposition
Example 1
Step 4 (out of 19)
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Block mesh decomposition
Example 1
Step 5 (out of 19)
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Block mesh decomposition
Example 1
Step 6 (out of 19)
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Block mesh decomposition
Example 1
Step 7 (out of 19)
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Block mesh decomposition
Example 1
Step 8 (out of 19)
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Block mesh decomposition
Example 1
Step 9 (out of 19)
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Block mesh decomposition
Example 1
Step 10 (out of 19)
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Block mesh decomposition
Example 1
Step 11 (out of 19)



3/1

Block mesh decomposition
Example 1
Step 12 (out of 19)
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Block mesh decomposition
Example 1
Step 13 (out of 19)
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Block mesh decomposition
Example 1
Step 14 (out of 19)
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Block mesh decomposition
Example 1
Step 15 (out of 19)
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Block mesh decomposition
Example 1
Step 16 (out of 19)
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Block mesh decomposition
Example 1
Step 17 (out of 19)
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Block mesh decomposition
Example 1
Step 18 (out of 19)



1/1

Block mesh decomposition
Example 1
Step 19 (out of 19)
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Block mesh decomposition
Example 2
Step 2 (out of 12)
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Block mesh decomposition
Example 2
Step 3 (out of 12)
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Block mesh decomposition
Example 2
Step 4 (out of 12)
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Block mesh decomposition
Example 2
Step 5 (out of 12)
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Block mesh decomposition
Example 2
Step 6 (out of 12)
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Block mesh decomposition
Example 2
Step 7 (out of 12)
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Block mesh decomposition
Example 2
Step 8 (out of 12)
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Block mesh decomposition
Example 2
Step 9 (out of 12)
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Block mesh decomposition
Example 2
Step 10 (out of 12)
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Block mesh decomposition
Example 2
Step 11 (out of 12)
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Block mesh decomposition
Example 2
Step 12 (out of 12)
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@ Representation of mesh topology for neural networks
@ Unified method to optimize connectivity of triangular and quadrilateral meshes
@ Heuristics-free method that learns rich behavior from self-play

@ Future work: Combine with Monte Carlo Tree Search, more complex geometries,
different formulations, optimize for element quality, 3D

[1] Narayanan, Pan, Persson. Learning topological operations on meshes with application to block

decomposition of polygons. In review & arXiv:2309.06484.
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